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IntrodutionLet (Ω,A, P) be probability spae, and E a re�exive Banah spae. The norm on E is denoted | · |.The quantization of a random variable X , taking its values in E onsists in its approximation bya random variable Y taking �nitely many values. The resulting error of this disretization is the Lpnorm of |X − Y |. Minimizing this error, with a �xed maximum ardinal of Y (Ω) yields the followingminimization problem:
min {‖X − Y ‖p, Y : Ω → E measurable , card(Y (Ω)) ≤ N} . (1)This problem, was �rst onsidered for signal transmission and ompression issues. More reently, quan-tization has been introdued in numerial probability, to devise quadrature methods [16℄, solving multi-dimensional stohasti ontrol problems [2℄ and for variane redution [4℄. Sine the 2000's, the in�nitedimensional setting has been investigated from both theoretial an numerial viewpoint, espeially in thequadrati ase [12℄. One elementary property of a L2 optimal quantizer is the stationarity: E[X |Y ] = Y.If X is a bi-measurable stohasti proess on [0, T ] verifying ∫ T

0
E[|Xt|2]dt < ∞, it an be onsideredas a random variable valued in the Hilbert spae H = L2([0, T ]). In [12℄, it is shown that in the enteredGaussian ase, linear subspaes U of H spanned by N -stationary quantizers orrespond to prinipalomponents of X , in other words, are spanned by eigenvetors of the ovariane operator of X . Thus,the quantization onsists �rst in exploiting its Karhunen-Loève deomposition (eX

n , λX
n

)

n≥1
.If dX(N) is the dimension of the subspae of L2([0, T ]) spanned by Y (Ω), the quantization error

eN (Y ) writes
eN(X)2 =

∑

j≥m+1

λX
j + eN





m⊗

j=1

N (0, λX
j )





2 for m ≥ dN (X). (2)
eN(X)2 <

∑

j≥m+1

λX
j + eN





m⊗

j=1

N (0, λX
j )





2 for 1 ≤ m < dN (X). (3)The deomposition is �rst trunated at a �xed order m and then the R
m-value Gaussian vetoronstituted of the m �rst oordinates of the proess on its Karhunen-Loève deomposition is quantized.To reah optimal quantization, we have both to determine the optimal rank of trunation dX(N) (thequantization dimension) and to determine the optimal dX(N)-dimensional Gaussian quantizer orre-sponding to the �rst oordinates, dX(N)⊗

j=1

N (0, λX
j ). Usual examples of suh proesses are the standardBrownian motion on [0, T ], the standard Brownian bridge on [0, T ], the frational Brownian motion andthe frational Ornstein-Uhlenbek proess.We an also hoose to use a produt quantization of m⊗

j=1

N (0, λX
j ). The produt quantization isthe artesian produt of the optimal quantizers of the standard one-dimensional Gaussian distributions

N
(
0, λX

i

)

1≤i≤dX (N)
. In the ase of independent marginals, this yields a stationary quantizer. Oneadvantage of this method is that the one-dimensional Gaussian quantization is a fast proedure. Newton-Raphson methods onverge very fast to the optimal quantization (see [18℄). Moreover, a sharply optimizeddatabase of quantizers of standard univariate and multivariate Gaussian distributions is available on theweb site www.quantize.maths-fi.om [19℄ for download. Still, we have to determine quantization size oneah dimension to obtain optimal produt quantization. In this ase, the minimization of the distorsion(2) omes to:

min







d∑

n=1

λX
n min

RNn

‖ξ − ξ̃(Nn)‖2
2 +

∑

n≥d+1

λX
n , N1 × · · · × Nd ≤ N, d ≥ 1






. (4)A solution of (4) is alled an optimal K-L produt quantizer. This problem an be solved by the "blindoptimization proedure", whih onsists in omputing the riterium for every possible deomposition

N1 × · · · × Nd with N1 ≥ · · · ≥ Nd. The result of this proedure an be kept o�-line for a future use.2



Optimal deompositions for a wide range of values of N for both Brownian motion and Brownian bridgeare available on the web site www.quantize.maths-fi.om [19℄.In [12℄, the rate of onvergene to zero of the quantization error is investigated. A omplete solutionis provided for the ase of Gaussian proesses with regular varying eigenvalues. Rates of onvergeneare available for the above ited examples of Gaussian proesses. The asymptoti of the quantizationdimension dX(N) are investigated in [13℄. The following theorem ombines these results:Theorem 0.1 (Funtional quantization asymptotis). Let X be a entered Gaussian proess on [0, T ]with Karhunen-Loève system (eX
n , λX

n )n≥1. Let (YN )N≥1 be a sequene of quadrati optimal N−quantizersfor X. We assume that
λX

n ∼ κ

nb
as n → ∞ (b > 1).We have:

• span(YN (Ω)) = span
{

eX
1 , · · · , eX

dX(N)

} and dX(N) = Ω(log N).
• eN(X) = ‖X − YN‖2 ∼ √

κ
√

bb(b − 1)−1(2 log N)−
b−1

2A onjeture is dX(N) ∼ 2
b log(N).It is shown in [12℄ that the Karhunen-Loève eigenvalues of the frational Brownian motion, (λBH

n )n≥1verify
λBH

n ∼ 1

n2H+1
as n → ∞,thus the frational Brownian motion sati�es the hypothesis of theorem 0.1.In a onstrutive viewpoint, the numerial omputation of the optimal quantization or the optimal prod-ut quantization requires a numerial evaluation of the Karhunen-Loève eigenfuntions and eigenvalues,at least the very �rst terms. (As seen in theorem 0.1, the quantization dimension of usual Gaussianproesses inreases asymptotially as the logarithm of the size of the quantizer, so it is most likely that itis small. For instane, the quantization dimension dW (N) of the Brownian motion with N = 10000 is 9.)The Karhunen-Loève deomposition of some usual Gaussian proesses have a losed-form expression. Itis the ase of the standard Brownian motion, the Brownian bridge and the Ornstein-Uhlenbek proess.(The speial ase of the Ornstein-Uhlenbek proess is derived in [4℄).1. The Brownian motion (Wt)t∈[0,T ],

eW
n (t) :=

√

2

T
sin

(

π(n − 1/2)
t

T

)

, λW
n :=

(
T

π(n − 1/2)

)2

, n ≥ 1. (5)2. The Brownian bridge on [0, T ],
eB

n (t) :=

√

2

T
sin

(

πn
t

T

)

, λB
n :=

(
T

πn

)2

, n ≥ 1. (6)3. The Ornstein-Uhlenbek proess on [0, T ], starting from 0, de�ned by the SDE drt = θ(mu− rt)dt+σdWt,with σ ≥ 0, θ > 0 and W a standard Brownian motion on [0, T ].
eOU

n (t) :=




1

√
T

2
−

sin(2ωλn
T )

4ωλn



 sin(ωλnt), λOU
n :=

σ2

ω2
λn

+ θ2
, n ≥ 1, (7)where ωλn are the (sorted) stritly positive solutions of the equation

θ sin(ωλnT ) + ωλn cos(ωλnT ) = 0.4. The stationary Ornstein-Uhlenbek proess on [0, T ], de�ned by the same SDE with r0 ∼ N (0, σ0).
eOU

n (t) := Cn (ωλn cos(ωλnt) + θ sin(ωλnt)) , λOU
n :=

σ2

ω2
λn

+ θ2
, n ≥ 1, (8)where ωλn are the (sorted) stritly positive solutions of the equation

2θω cos(ωλnT ) + (θ2
− ω2

λn
) sin(ωλnT ) = 0,3



and
1

C2
n

=
θ

2
(1 − cos(2ωλnT )) +

ωλn

2

(

T +
sin(2ωλnT )

2ωλn

)

+
θ2

2

(

T −
sin(2ωλnT )

2ωλn

)

.In a more general setting, we do not have a losed-form expression for the Karhunen-Loève deom-position. For instane, as far as we know, the K-L expansion of the frational Brownian motion is notknown. Hene, a numerial method to evaluate �rst Karhunen-Loève eigenfuntions is the "missing link"on the path to the onstrutive optimal quantization of more Gaussian proesses.However, we an derive rate-optimal quantization of Gaussian proesses using other series expansionsas proposed by Lushgy and Pages in [14, 17℄. In this setting, the ase of the frational Brownian motionan be derived using a rate-optimal series expansion proved by Dzhaparidze and van Zanten in [7, 8℄.Other onstrutive approahes for funtional quantization are proposed by Wilbertz in [21℄.In this artile, we experiment the so-alled "Nyström method" [1, 5, 20℄ for approximating thesolution of the funtional eigenvalue problem whih de�nes the Karhunen-Loève deomposition. First,we ompare the result of the the numerial method with the losed-forms available for the Brownianmotion, the Brownian bridge and the Ornstein-Uhlenbek proess. Then, the speial ase of the funtionalquantization of the frational Brownian motion is handled.Funtional quantization of Gaussian proesses have numerous appliations in numerial probability.In [4℄, a variane redution method based on the funtional quantization of a Gaussian proess wasproposed. This method an be seen as a "Guided Monte-Carlo simulation" (see �gure 8). Still, itwas only appliable with Gaussian proesses for whih we ould have a numerial evaluation of theKarhunen-Loève eigenfuntions. Suh a variane redution method would be of high interest in Monte-Carlo simulations implying the frational Brownian motion beause its simulation shemes have a highomplexity.Subsequently, we test this "funtional strati�ation" variane redution algorithm in option priingproblems within the frational Brownian motion's ounterpart of the lassial Blak and Sholes model.First, the ase of a Vanilla option is benhmarked with the losed-form expression available in this ase.Then the ase of disrete barrier options is tested.1 The Nyström methodLet X be a bi-measurable Gaussian stohasti proess on [0, T ] de�ned on the probability spae (Ω,A, P).We assume that ∫
[0,T ]

E[X2
s ]ds < ∞. Let us denote ΓX(t, s) the ovariane funtion of X de�ned by

ΓX(t, s) = cov(Xt, Xs). The ovariane operator CX of X is de�ned by CXf =
∫

[0,T ]
ΓX(·, s)f(s)dt.It is a symmetri positive trae lass operator on L2[0, T ]. The Karhunen-Loève basis assoiated with

X , denoted (eX
n )n≥1 is the Hilbert basis of L2[0, T ] onstituted with eigenvetors of CX with dereasingeigenvalues. Now, we aim to solve numerially the eigenvalue problem

∫ T

0

ΓX(·, s)fk(s)ds = λkfk, k ≥ 1. (9)The Nyström method requires the hoie of some quadrature rule ∫ T

0
f(s)ds ∼

n∑

i=1

wjf(sj). (wj)1≤j≤n isthe sequene of the weights of the quadrature rule, while (sj)1≤j≤n are the absissas where f is evaluated.If we introdue this quadrature rule in equation (9), we get
n∑

j=1

wjΓX(t, sj)fk(sj) = λkfk(t) t ∈ [0, T ]. (10)Evaluating equation (10) at the quadrature points yields
n∑

j=1

wjΓX(ti, sj)fk(sj) = λkfk(ti) i ∈ {1, · · · , n}. (11)
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Let f be the vetor  fk(t1)...
fk(tn)




, ((Kij))1≤i,j≤n the matrix ((ΓX(ti, sj)))1≤i,j≤n, λ = (diag(λk))k=1···nand de�ne K̃ij = Kijwj . Then the eigenvalue problem beomes

K̃f = λf. (12)Hene, within this approximation, the funtional eigenvalue problem turns into a matrix eigenvalueproblem. As K is a ovariane matrix, it is symmetri. However, sine the weights are not equal for mostquadrature rules, the matrix K̃ is not symmetri. As outlined in [20℄, numerial methods for matrixorthogonalization are muh simpler in the symmetri ase. As a onsequene, we should restore thesymmetry if possible. The method proposed in [20℄ is the following:We de�ne the diagonal matrix D = diag(wj) and its square root D1/2 = diag(√wj). Then equation(12) beomes
K · D · f = λf. (13)Multiplying by D1/2, we get

(

D1/2 · K · D1/2
)

· h = λh, where h = D1/2 · f. (14)Equation (14) is now in the form of a symmetri eigenvalue problem. For square-integrable kernels(we stand in this ase), this provides a good approximation of the n highest eigenvalues.1.1 Choie of the quadrature methodClassial numerial methods for real symmetri matrix diagonalization are
• The Jaobi transformation for symmetri diagonalization.
• A tridiagonalization (by Givens or Householder redution) followed by a QL algorithm with impliitshifts.All these numerial methods have a O(n3) omplexity. As a onsequene, the natural hoie for thequadrature method would be the highest order possible (A high order Bode's formula, or a Gaussianquadrature).However as pointed out in [11℄, the Nyström method assoiated with the trapezoidal integration ruleadmits an asymptoti error expansion in even powers of the step sizes as soon as the ovariane funtionis di�erentiable (or ontinuous and pieewise di�erentiable). As a onsequene, instead of using the highorder integration rule, we prefer to use a Rihardson-Romberg extrapolation on the result of the wholeproedure with the trapezoidal quadrature formula. We ould reah an auray whih approahes themahine roundo� error on the �rst eigenvalues when we benhmark this method on the Brownian motion,the Brownian bridge or the Ornstein-Uhlenbek proess. Another argument for the trapezoidal rule isthat we enountered some small instabilities on the eigenfuntion evaluation when using higher ordershemes.1.2 Choie of the interpolation methodThe natural hoie is to use equation (10) as an interpolation method for evaluating fk,

fk(t) =
1

λk

n∑

j=1

wjK(t, sj)fk(sj). (15)The same Rihardson-Romberg extrapolation an be performed between the values of n∑

j=1

wjK(t, sj)fk(sj)with the di�erent orders n to ompute this integral. The result is then divided by the extrapolated valueof λk.A remark on the interpolation method 5



One purpose of the quantization of a Gaussian proess X , is to perform a quantization of a di�usionwith respet X , as soon as suh a stohasti integral an be de�ned. We an obtain a quantizer ofthe di�usion by inserting the quantizer of the Gaussian proess in the di�usion equation written inthe Stratonovih sense. The most aomplished study on this subjet is [15℄. In this ase, we mayalso need a numerial approximation of the time-derivative of the eigenfuntion in the Karhunen-Loèvedeomposition. This work is mostly spei� to the Brownian motion but main results remain valid forontinuous semi-martingales that satisfy the Kolmogorov riteria as the Brownian bridge and Ornstein-Uhlenbek proesses.Still, a future work ould be to extend these results to di�usions with respet to the frationalBrownian motion and other related proesses. If ΓX is (weakly) di�erentiable, a natural evaluationmethod for the derivative would be f ′
k(t) = 1

λk

n∑

j=1

wj∂1ΓX(t, sj)fk(sj).One problem is that this method yields an irregular derivative. For example, this yields a pieewiseonstant derivative in the ase of the Brownian motion. This auses instabilities problems when usingRunge-Kutta integration methods for ordinary di�erential equations, whih rely on the regularity of theonsidered Cauhy problem.As a onsequene, a more regular interpolation method an give more satisfatory results when dealingwith di�usions. (Spline or rational interpolation methods for instane.)2 Benhmark on known Karhunen-Loève expansionsIn this setion, we ompare the numerial results obtained with the Nyström methods in ases wherewe have losed-form expression of the Karhunen-Loève expansion. The multi-steps Rihardson-Rombergextrapolation onsists in using the asymptoti error estimate of the method
V = un +

K1

n2
+

K2

n4
+ · · · + O

(
1

n2p

)

.Writing this expression for p di�erent values of n allows us to solve a p × p linear system to nullify the
p − 1 �rst orders of onvergene. The three-steps Rihardson-Romberg extrapolation with n = p, n = land n = k gives the following solution :

Ukk4(m2 − l2) + Ull
4(k2 − m2) + Umm4(l2 − k2)

(m2 − l2)(l2m2 + k4 − m2k2 − l2k2)
.This result is naturally invariant by any permutation of the oe�ients (k, m, l). We experiened lessaurate results when using higher order Rihardson-Romberg extrapolation, so we will settle for athree-steps extrapolation.2.1 Eigenvalues aurayIn tables 1 and 2, Karhunen-Loève eigenvalues of the Brownian motion and of the Brownian bridge on

[0, 1] are reported. Table 3 deals with the stationary Ornstein-Uhlenbek on [0, 1] de�ned by the SDE
drt = −θrtdt + σdWt, r0 ∼ N

(

0,
1

2

)

. (16)First olumn gives the theoretial value given by the losed-form. Following olumns give the valueomputed with the Nyström method with a regular step size with 25, 50 and 100 points. Last olumngives the absolute error of a 3 steps Rihardson-Romberg extrapolation method between n = 25, n = 50and n = 100.With regard to the above numerial results, Nyström method yields a satisfatory auray forperforming funtional quantization of these proesses.2.2 Eigenfuntions aurayWe now ompare the losed-form expression of the eigenfuntion with the approximation obtained by"Rihardson-Romberg extrapolated trapezoidal Nyström method". In table 4, we report the highest6



Trapezoidal Trapezoidal Trapezoidal Trapezoidal NyströmClosed-form Nyström Nyström Nyström 25 − 50 − 100 Rihardson-Romberg
25 points 50 points 100 points absolute error

0.405284735 0.405418094 0.405318070 0.405293068 6.3727e−14
0.0450316372 0.0451652077 0.0450649853 0.0450399714 5.2269e−12
0.0162113894 0.0163453833 0.0162447639 0.0162197259 4.0448e−11
0.00827111703 0.00840574996 0.00830453112 0.00827945541 1.5607e−10
0.00500351524 0.00513900777 0.00503698224 0.00501185691 4.2896e−10Figure 1: Reord of the 5 highest eigenvalues of the Karhunen-Loève deomposition of the Brownianmotion. Trapezoidal Trapezoidal Trapezoidal Trapezoidal NyströmClosed-form Nyström Nyström Nyström 25 − 50 − 100 Rihardson-Romberg

25 points 50 points 100 points absolute error
0.101321184 0.101454622 0.101354524 0.101329517 1.0314e−12
0.0253302959 0.0254640514 0.0253636556 0.0253386309 1.6540e−11
0.0112579093 0.0113921955 0.0112913019 0.0112662463 8.4041e−11
0.00633257398 0.00646760876 0.00636601285 0.00634091389 2.6697e−10
0.00405284735 0.00418885438 0.00408634582 0.00406119097 6.5608e−10Figure 2: Reord of the 5 highest eigenvalues of the Karhunen-Loève deomposition of the Brownianbridge. Trapezoidal Trapezoidal Trapezoidal Trapezoidal NyströmClosed-form Nyström Nyström Nyström 25 − 50 − 100 Rihardson-Romberg

25 points 50 points 100 points absolute error
0.369405405 0.369395812 0.369403011 0.369404807 2.7645e−13
0.0690018877 0.0690750142 0.0690201680 0.0690064577 2.0265e−12
0.0225442436 0.0226553722 0.0225719721 0.0022551172 5.3713e−12
0.0106644656 0.0107875835 0.0106950942 0.0106721134 5.8762e−11
0.00613945693 0.00626790650 0.00617127881 0.00614739440 2.2151e−10Figure 3: Reord of the 5 highest eigenvalues of the Karhunen-Loève deomposition of the stationaryOrnstein-Uhlenbek proess de�ned by the SDE drt = −θrtdt + σdWt, r0 ∼ N

(
0, 1

2

).absolute di�erene between the losed-form expression and the approximation on a 300 points regularmesh of [0, 1]. The tested ases are the Brownian motion, the Brownian bridge and the stationaryOrnstein-Uhlenbek proess de�ned by the SDE (16) with σ = 1 and θ = 1.3 Quantization of the frational Brownian motionThe normalized frational Brownian motion BH , is a entered Gaussian proess on [0, T ], whih has thefollowing ovariane funtion:
ΓBH (t, s) =

1

2

(
|t|2H + |s|2H − |s − t|2H

)
, (17)where H ∈ (0, 1) is alled the Hurst parameter. If H = 1

2 then the proess is the standard Brownianmotion.A simple appliation of the Nyström method presented in setion 1 produes regularly shaped fun-tional quantizers of the frational Brownian motion. In �gure 5, a (5 × 2 × 2)−produt quantizer of thefrational Brownian motion with 3 di�erent values of the Hurst parameter is plotted.7



Rihardson-Romberg
50 − 100 − 200 e1 e2 e3 e4 e5absolute errorStandardBrownian motion 3.8769e−6 3.4909e−5 9.6779e−5 1.9053e−3 3.1558e−3on [0, 1]StandardBrownian bridge 1.5505e−5 6.2096e−5 1.1398e−3 2.4863e−3 3.8531e−3on [0, 1]Stationary Ornstein-Uhlenbekproess on [0, 1] 3.2257e−6 2.1355e−5 6.8185e−5 1.4614e−3 2.5523e−3with σ = 1 and θ = 1Figure 4: Reord of the biggest absolute error on the Karhunen-Loève eigenfuntions approximation bythe Rihardson-Romberg extrapolated trapezoidal Nyström method. The number of time steps used forthe 3 steps interpolation are 50, 100 and 200. 300 equally spaed points on [0, 1] were tested. Eaholumn orresponds to one eigenfuntion.PSfrag replaements
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Figure 5: (5 × 2 × 2)−produt quantizer of frational Brownian motions on [0, 1] with Hurst exponent
H = 0.3 (left), H = 0.5 (middle) and H = 0.7 (right).Still, for H < 1

2 , the ovariane funtion of the frational Brownian motion has singularities thatbreak the onvergene of the trapezoidal integration rule in even powers of the step sizes. Indeed, thederivative of t → ΓBH (t, s) has an in�nite limit for t → 0+ and for (t → s− or t → s+). It breaks alsothe onvergene of the whole assoiated Nyström method in even powers of the step sizes. In [1, 5, 20℄,methods to handle suh boundary and diagonal singularities are proposed. We will deal with this insetion 3.1However, it is not the ase for H ≥ 1
2 , so that we an be on�dent in the results of this method in thisase. In table 6, we report the 5 highest Karhunen-Loève eigenvalues of the frational Brownian motionon [0, 1] with Hurst exponent H = 0.7. The number of time steps are 128, 256 and 512. Last olumnyields the orresponding three-steps Rihardson-Romberg extrapolation. All the omputation has beenperformed with an otuple preision �oating point number implementation to inrease the auray ofthe 513× 513-matrix eigensystem omputation. (Let us preise that in the ase of the Brownian motionon [0, 1], when performing the same omputation, we get an absolute error smaller than 1e−15 for the�ve �rst eigenvalues.)3.1 Kernel singularities when H <

1

2As pointed out above, the ovariane funtion of the frational Brownian has a boundary singularity for
t → 0+ and a diagonal singularity. In this setion, we will use lassial methods to handle this kind ofsingularities. See [1, 5, 20℄ for a review of these method.
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Trapezoidal Trapezoidal Trapezoidal TrapezoidalNyström Nyström Nyström Nyström
128 points 256 points 512 points 128 − 256 − 512 Rihardson-Romberg

0.374536638 0.374533535 0.374532774 0.374532521757236
0.0250351543 0.0250343274 0.0250341354 0.0250340726875501
0.00728913038 0.00728860123 0.00728848368 0.0072884458064217
0.00322117252 0.00322075790 0.00322066901 0.0032206406932789
0.00176153269 0.00176116702 0.00176109039 0.00176106615722872Figure 6: Reord of the 5 highest eigenvalues of the frational Brownian motion on [0, 1] with Hurstexponent H = 0.7.3.1.1 Handling the boundary singularityChange of variableThe singular behavior of the frational Brownian motion's ovariane funtion ΓBH de�ned in equation(17) an be removed by a hange of variable. The hange of variable u = t2H and v = s2H in integral(9) yields:

∫ T 2H

0

ΓBH

(

u
1

2H , v
1

2H

)

fk

(

v
1

2H

) 1

2H
v

1

2H
−1dv = λkfk

(

u
1

2H

)

. (18)(The seond hange of variable is done to preserve the symmetry of the Kernel.)This omes to
∫ T 2H

0

1

2

(

|u| + |v| − |u 1

2H − v
1

2H |2H
)

fk

(

v
1

2H

) 1

2H
v

1

2H
−1dv = λkfk

(

u
1

2H

)

. (19)Quadrature rule on a single intervalWe now derive a quadrature rule on [0, T ] with respet to the weight funtion w(v) = 1
2H v

1

2H
−1 =

w(v) = 1
2H vα with α := 1

2H − 1. The aim is to make the quadrature rule exat with a�ne funtions asthe trapezoidal quadrature rule is, in the ase of an integration with a onstant weight.
∫ r

l

1

2H
xα(ax + b)dx = wl(al + b) + wr(ar + b) ∀(a, b) ∈ R

2.This yields
1

2H

(
a

α + 2
(rα+2 − lα+2) +

b

α + 1
(rα+1 − lα+1)

)

= a(wll + wrr) + b(wl + wr) ∀(a, b) ∈ R
2.i.e. (

l r

1 1

)(
wl

wr

)

=

( 1
2H

1
α+2

(
rα+2 − lα+1

)

1
2H

1
α+1

(
rα+1 − lα+1

)

)

.The solution of the linear system is
wl =

1

2H

(α + 1)lα+2 + rα+2 − (α + 2)lα+1r

(α + 1)(α + 2)(r − l)
, wr =

1

2H

(α + 1)rα+2 + lα+2 − (α + 2)rα+1l

(α + 1)(α + 2)(r − l)
.This is

wl =
l

1

2H
+1 + 2Hr

1

2H
+1 − (2H + 1)l

1

2H r

(2H + 1)(r − l)
, wr =

r
1

2H
+1 + 2Hl

1

2H
+1 − (2H + 1)r

1

2H l

(2H + 1)(r − l)
.Quadrature rule for equally spaed absissasLet us now onsider the equally spaed absissas points xi = iT

n , i = 0, 1, · · · , n. We now use theseweights n times to integrate on intervals (x2H
0 , x2H

1 ), (x2H
1 , x2H

2 ), · · · , (x2H
n−1, x

2H
n ) to obtain the extendedrule of quadrature. The onvergene rate of this method is the same as the trapezoidal rule.9



3.1.2 Handling the diagonal singularityWe now have to handle the diagonal singularity |u − v|2H in equation (9). One lassial method if touse the smoothness of the solution by subtrating of the singularity.
∫ T

0

ΓBH (t, s)f(s)ds =

∫ T

0

ΓBH (t, s) (f(s) − f(t)) ds + r(t)f(t),where r(t) =
∫ T

0 ΓBH (t, s)ds. The disretized eigenvalue problem is now transformed to
λkfk(ti) =

n∑

j=1

wjKij (fk(tj) − fk(ti)) + r(ti)fk(ti)

=
n∑

j=1

wjKijfk(tj) +

(

r(ti) −
n∑

j=0

wjKij

)

fk(ti).
(20)We now de�ne the diagonal matrix D = diag(wi)1≤i≤n and D1/2 = diag(

√
wi)1≤i≤n as in setion 1.Moreover, we denote ∆ = diag

(

r(ti) −
n∑

j=0

wjKij

)

1≤i≤n

.Equation (20) writes
λkfk = K · Dfk + ∆fk.Multiplying by D

1

2 yields λh =
(

D
1

2 · K · D 1

2 + ∆
)

h, with h = D
1

2 f . As a onsequene, we obtainagain a symmetri matrix eigenvalue problem. In the ase of the frational Brownian motion, thefuntion r(t) =
∫ T

0 ΓBH (t, s)ds is derived expliitly:
r(t) =

1

2

(
T 2H+1 − u2H+1

2H + 1
+ u2HT − (T − u)2H+1

2H + 1

)

.3.1.3 Optimal quantization of the frational Brownian motionWe now use this approximation of the Karhunen-Loève basis to perform an optimal quantization of thefrational Brownian motion with a 50-100-200 three-step Rihardson-Romberg extrapolated Nyströmmethod.In �gure 7, we display the quadrati optimal N−quantizer of the frational Brownian motion on [0, 1]with Hurst exponent H = 0.25 and N = 20. In this ase, the quantization dimension is 3.PSfrag replaements
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4 Funtional strati�ation of the frational Brownian motionIn this setion, we experiment the funtional quantization based strati�ed sampling algorithm proposedin [4℄ with the frational Brownian motion.4.1 Bakground on strati�ationLet E be a separable Hilbert spae. The idea of strati�ation is to loalize the Monte-Carlo simulationon the elements of a measurable partition of the state spae of a L2 random variable X : (Ω,A) → (E, ε).
• Let (Ai)i∈I be a �nite ε-measurable partition of a E. The sets Ai are alled strata. Assume thatthe weights pi = P(X ∈ Ai) are known for i ∈ I and stritly positive.
• Let us de�ne the olletion of independent random variables (Xi)i∈I with distribution L(X |X ∈

Ai).Let F : (E, ε) → (R,B(R)) suh that E[F 2(X)] < +∞.
E[F (X)] =

∑

i∈I

E[1{Xi∈Ai}F (X)] =
∑

i∈I

piE[F (X)|X ∈ Ai]

=
∑

i∈I

piE[F (Xi)].The strati�ation onept omes into play now. Let M be the global budget alloated to the omputationof E[F (X)] and Mi = qiM the budget alloated to ompute E[F (Xi)] in eah stratus. We assume that
∑

i∈I

qi = 1. This leads to de�ne the (unbiased) estimator of E[F (X)]:
F (X)

I

M :=
∑

i∈I

pi
1

Mi

Mi∑

k=1

F (Xk
i ), (21)where (Xk

i )1≤k≤Mi
is a L(X |X ∈ Ai)-distributed random sample.Proposition 4.1. With the same notations:

Var
(
F (X)

I

M

)
=

1

M

∑

i∈I

p2
i

qi
σ2

F,i, (22)where σ2
F,i = Var(F (X)|X ∈ Ai) = Var(F (Xi)) ∀i ∈ I.The proof an be found in [4℄. Optimizing the simulation alloation to eah stratus amounts to solvingthe following minimization problem:

min
(qi)∈PI

∑

i∈I

p2
i

qi
σ2

F,i where PI =

{

(qi)i∈I ∈ R
I
+

∣
∣
∣

∑

i∈I

qi = 1

}

. (23)In [4℄, Corlay and Pagès pointed out theoretial aspets of quantization that lead to a strong link betweenthe problem of optimal L2-quantization of a random variable and the variane redution that an beahieved by strati�ation. Three types of alloation rules for the budgets (qi)i∈I are proposed:
• The "sub-optimal rule" is to set

qi = pi, i ∈ I. (24)The two motivations for this hoie are the fats that the weights pi are known and beause italways redues the variane.
• The "optimal rule" is the solution of the onstrained minimization problem (23). The Shwartzinequality yields

∑

i∈I

piσF,i =
∑

i∈I

piσF,i√
qi

√
qi ≤

(
∑

i∈I

p2
i σ

2
F,i

qi

)1/2(
∑

i∈I

qi

)

︸ ︷︷ ︸

=1

1/2

.11



As a onsequene, the solution of the minimization problem orresponds to the equality ase intothe Shwartz inequality. Hene the solution of the minimization problem is given by
q∗i =

piσF,i
∑

j∈I

pjσF,j
, i ∈ I (25)and the orresponding minimal variane is given by (∑
i∈I

piσF,i

)2

.The ounterpart of this method is that we do not know expliitly the solution (q∗i )i∈I . In [10℄, Étoréand Jourdain proposed an algorithm for adaptively modifying the proportion of further drawingsin eah stratum, that onverges to the optimal alloation. This an be used in a general framework.Another pratial solution would be to implement a simple prior rough estimation of the optimalalloation.
• The "Lipshitz optimal" rule. When the partition (Ai)i∈I is a Voronoi partition assoiated withan optimal quantizer of X , Corlay and Pagès onsidered the setting

qi = σi, i ∈ I, (26)where σi is the loal inertia of the random variable X , σ2
i = E

[

|X − E[X |X ∈ Ai]|2
∣
∣
∣X ∈ Ai

]

.It is proved that this setting has a uniform e�ieny among the lass of Lipshitz ontinuousfuntionals. Moreover, loal inertia (σi)i∈I are known. This solution overomes the "sub-optimalhoie" in every test done in [4℄.4.2 On the funtional strati�ation of Gaussian proessesHere, we assume that X is an R-valued Gaussian proess on [0, T ]. We are interested in the value of
E[F (Xt0 , Xt1 , · · · , Xtn

)] where 0 = t0 ≤ t1 ≤ · · · ≤ tn = T are n + 1 dates of interest for the underlyingproess. Let us assume that χ ∈ Opq(X, N) is a K-L produt quantizer of X . The odebook assoiatedwith this produt quantizer is the set of the paths of the form
χi =

∑

n≥1

√

λX
n x

(Nn)
in

eX
n , i = {i1, · · · , in, · · · },where (eX

n , λX
n ) is the Karhunen-Loève deomposition of the proess X on [0, T ] and xNn

in
is the inthelement of an optimal quantizer of size Nn of the standard one-dimensional Gaussian distribution.We now need to be able to simulate the onditional distribution

L(X |X ∈ Ai)where Ai is the slab assoiated with χi in the odebook.To simulate the onditional distribution L(X |X ∈ Ai), we will:
• First, simulate the �rst K-L oordinates of X . The expliit simulation algorithm is available in [4℄
• Then simulate the onditional distribution of the marginals of the Gaussian proess, its �rst oor-dinates being settled.In this setting, the aim is to simulate the onditional distribution

L
(

Xt0 , · · · , Xtn

∣
∣
∣

∫ T

0

Xse
X
1 ds,

∫ T

0

Xse
X
2 (s)ds, · · · ,

∫ T

0

Xse
X
d (s)ds

) (27)where (Xt)t∈[0, T ] is a L2
R-valued Gaussian proess, and (eX

k , λX
k )k∈N∗ is the Karhunen-Loève systemassoiated with the proess X .Conditional simulation: In [4℄, two solutions are proposed for the simulation of the onditionaldistribution (27). 12



• The �rst one is the naive Cholesky method for Gaussian vetor simulation, whih has a quadratiomplexity in the number of time steps. This �rst simulation sheme was not ompetitive forlinearly simulable proesses as the Brownian motion. In the following, we will mention this methodas the brute fore method.
• The other solution, detailed in [4℄ requires a prior simulation of the unonditional distributionof (Xt0 , · · · , Xtn

) and has then a linear additional ost. This algorithm will be mentioned inthe following as the linear onditioning algorithm. For Gaussian proesses whih have a linearsimulation sheme in the unonditional ase (as the Ornstein-Uhlenbek proess, the Brownianbridge and the Brownian motion), this method is of high interest.4.3 The ase of the frational Brownian motionPossible methods for simulating the frational Brownian motion on a shedule t0 < t1 < · · · < tn are
• the naive Cholesky method, that has quadrati omplexity,
• and the irulant matrix method whih has a O(n ln(n)) omplexity [6, 22℄. The irulant matrixmethod is also available for the multifrational Brownian motion [23℄.No exat simulation sheme with a linear omplexity exists for the frational Brownian motion. Still,approximate method with linear omplexity exists. If we hoose the Cholesky method, there is no interestto use the linear onditioning algorithm proposed in [4℄. The brute fore Cholesky method is adapted tothis situation.In every other ase, if the unonditional simulation method has smaller omplexity, we have interest touse the linear onditioning algorithm whih has a linear additional ost to the unonditional simulation.In �gure 8, we plot a few paths of the onditional distribution of the frational Brownian motion withHurst's parameter H = 0.3 knowing that they belong to a given L2 Voronoi ell.PSfrag replaements
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• First, simulate the disrete weighted distribution of the strata index (i, pi)i∈I to selet the strata.
• Then simulate the onditional distribution L

(

Xt0 , · · · , Xtn

∣
∣
∣X ∈ Ai

) of the Gaussian proess inthe strata by the method desribed above.The result should be distributed aording to the distribution of the underlying Gaussian proess. Intable 9, we report the ovariane struture E[Xti
Xtj

]1≤i,j≤n estimated by a Monte-Carlo simulation when
X is a frational Brownian motion with Hurst's parameter H = 0.7. The tested shedule is (iT

n )0≤i≤nwith T = 1 and n = 5. The produt deomposition of the quantization is 10 × 5 × 2.
0.105061 0.138629 0.15846 0.173817 0.186687

0.138629 0.277258 0.330656 0.365844 0.394071

0.15846 0.330656 0.489116 0.557871 0.605929

0.173817 0.365844 0.557871 0.73168 0.813313

0.186687 0.394071 0.605929 0.813313 1

0.105141 0.138748 0.158596 0.173959 0.186824

0.138748 0.277417 0.330885 0.366075 0.394372

0.158596 0.330885 0.489454 0.558177 0.606266

0.173959 0.366075 0.558177 0.731923 0.813579

0.186824 0.394372 0.606266 0.813579 1.0003Figure 9: Theoretial (left) and estimated (right) ovariane E[Xti
Xtj

] of the rebuilt frational Brownianmotion with H = 0.7. The number of generated paths for this Monte-Carlo simulation was 1 · 107.In every tested ase, when generating table 9, the theoretial value lies in the 95% on�dene interval.These on�dene intervals were not displayed for briefness. We obtain the same order of auray withother values of H ∈ (0, 1).4.5 Appliation to option priingA stohasti integral with respet to the frational Brownian motion has been introdued in [9℄ by Helliotand van der Hoek, and in [3℄ by Biagini, Øksendal, Sulem and Wallner. They proposed a generalizationof the Blak-Sholes model. As in the lassial Blak-Sholes market, two assets are available:
• A risk-free asset whose prie is given by

dS0
t = rS0

t dt (28)
• and a risky asset whose prie is given by

dSt = µStdt + σStdBH
t , (29)where r, µ and σ are onstants and BH is frational Brownian motion with Hurst parameter H .It has been shown that this market presents no arbitrage opportunity and is omplete. Moreover, thesolution of the stohasti di�erential equation (29) is given by

St = S0 exp

(

σBH
t + µt − 1

2
σ2t2H

)

. (30)The following theorem, prooved in [9℄ deals with the prie of a European all option.Theorem 4.2 (Frational Blak-Sholes Formula). The prie at every time t ∈ [0, T ] of a European alloption with strike prie K and maturity T is given by
C(t, St) = StN (d1) − Ke−r(T−y)N (d2) (31)where

d1 =
ln
(

St

K

)
+ r(T − t) + σ2

2 (T 2H − t2H)

σ
√

T 2H − t2H
(32)

d2 =
ln
(

St

K

)
+ r(T − t) − σ2

2 (T 2H − t2H)

σ
√

T 2H − t2H
(33)This losed-form expression is used to benhmark our simulation sheme of the frational Brownianmotion. 14



4.5.1 Benhmark with a Barrier option in the frational Blak and Sholes modelHere, we benhmark the numerial method for a path dependent option in the ase of a Barrier optionin the frational Blak and Sholes model. For the sake of simpliity, we onsider a log-normal Blakand Sholes di�usion with no drift (no interest rate and no dividend). The hosen Hurst exponent is
H = 0.3. The numerial results are reported in table 10.The results are displayed for di�erent values of the initial spot S, the strike K, the barrier B, thevolatility σ, the maturity T and the number of equally spaed �xing dates n.In this table, the �rst olumn orresponds to a simple Monte-Carlo estimator. The last three olumnsorrespond to a strati�ed sampling estimator with di�erent simulation alloation for eah strata.The "sub-optimal weights" olumn stands for the alloation budget of equation (24). The "Lip.-optimal weights" olumn stand for the "universal strati�ation" budget alloation of equation (26).Both these two ase have expliit alloation rules. Last olumn, "Optimal weights" orresponds to anestimation of the optimal budget alloation given in expression (25).Simple Strat. Estimator Strat. Estimator Strat. EstimatorParameters Estimator sub-optimal weights Lip.-optimal weights Optimal weights

S = 100, K = 100 12.5947 12.5674 12.5566 12.5890
B = 125, σ = 0.3, [12.4429, 12.7466] [12.4732, 12.6615] [12.4654, 12.6477] [12.5201, 12.6579]
T = 1.5, n = 11 Var = 600.5711 Var = 230.8692 Var = 216.3442 Var = 123.5426

S = 100, K = 100 1.3412 1.3826 1.3613 1.3769
B = 200, σ = 0.3, [1.2677, 1.4146] [1.3140, 1.4511] [1.3002, 1.4224] [1.3530, 1.4009]

T = 1, n = 11 Var = 140.5978 Var = 122.2808 Var = 97.1538 Var = 14.9352Figure 10: Numerial results for the Up In Call option, with 100 = ×5 × 2 stratas.We notie that the quantization based strati�ed sampling method redues notieably the variane of theMonte-Carlo estimator. The universal strati�ation alloation rule (26) proposed in [4℄ overomes thesub-optimal weight alloation. Moreover, the "optimal alloation" estimation yields a better varianeredution fator.Referenes[1℄ Kendall E. Atkinson. The numerial solution of integral equation of the seond kind. CambridgeMonographs on Applied and Computational Mathematis, 1999.[2℄ Vlad Bally, Gilles Pagès, and Jaques Printems. A quantization tree method for priing and hedgingmultidimensional Amerian options. Mathematial Finane, 15(1):119�168, 2005.[3℄ Franesa Biagini, Bernt Øksendal, Agnès Sulem, and Naomi Wallner. An introdution to white-noise theory and malliavin alulus for frational Brownian motion. Proeedings: Mathematial,Physial and Engineering Sienes, 460(2041):347�372, 2004.[4℄ Sylvain Corlay and Gilles Pagès. Funtional quantization based strati�ed sampling methods. 2010.[5℄ L.M. Delves and J.L. Mohammed. Computational methods for integral equations. Cambridge Uni-versity Press, 1985.[6℄ C.R. Dietrih and Garry Neil Newsam. Fast and exat simulation of stationary Gaussian proessesthrough irulant embedding of the ovariane matrix. SIAM Journal Si. Comput., 18:1088�1107.,1997.[7℄ Kaha Dzhaparidze and Harry van Zanten. A series expansion of frational brownian motion.Probability theory and related �elds, 130:39�55, 2004.[8℄ Kaha Dzhaparidze and Harry van Zanten. Optimality of an expliit series expansion of the frationalbrownian sheet. Statistis and probability letters, 71:295�301, 2005.[9℄ Robert J. Elliott and John van der Hoek. A general frational white noise theory and appliationsto �nane. Mathematial Finane, 13(2):301�330, 2003.15
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