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Université Paris 6

gpa@ccr.jussieu.fr

Huyên PHAM

Laboratoire de Probabilités et
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Abstract

We review optimal quantization methods for numerically solving nonlinear problems
in higher dimension associated with Markov processes. Quantization of a Markov pro-
cess consists in a spatial discretization on finite grids optimally fitted to the dynamics
of the process. Two quantization methods are proposed: the first one, called marginal
quantization, relies on an optimal approximation of the marginal distributions of the
process, while the second one, called Markovian quantization, looks for an optimal ap-
proximation of transition probabilities of the Markov process at some points. Optimal
grids and their associated weights can be computed by a stochastic gradient descent
method based on Monte Carlo simulations. We illustrate this optimal quantization
approach with four numerical applications arising in finance: European option pricing,
optimal stopping problems and American option pricing, stochastic control problems
and mean-variance hedging of options and filtering in stochastic volatility models.
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1 Introduction

Optimal quantization of random vectors consists in finding the best possible approximation
(in Lp) of a Rd-valued random vector X by a measurable function ϕ(X) where ϕ takes at
most N values in Rd. This is a very old story which starts in the early 50’s. The idea was
to use a finite number N of codes (or “quantizers”) to transmit efficiently a continuous
stationary signal. Then it became essential to optimize the geometric location of these
quantizers for a given distribution of the signal and to evaluate the resulting error. In a
more mathematical form, the problem is to find out a measurable function ϕ∗ (if some)
such that

‖X − ϕ∗(X)‖p = inf
{
‖X − ϕ(X)‖p , ϕ : Rd → Rd, |ϕ(Rd)| ≤ N

}

and then to evaluate ‖X − ϕ∗(X)‖p , especially when N goes to infinity. These problems
have been extensively investigated in information theory and signal processing (see [12]).
However, from a computational point of view, optimal quantization remained essentially
limited to one dimensional signals, the optimization process, essentially deterministic, be-
coming intractable for multi-dimensional signals. The drastic cut down of massive Monte
Carlo simulation cost on computers made possible the implementation of alternative pro-
cedures based on probabilistic ideas (see the CLV Q algorithm below). This gave birth
to many applications and extensions in various fields like automatic classification, data
analysis and artificial neural networks. Let us mention e.g. the self-organizing maps intro-
duced by Kohonen in the early 80’s (see [15]). More recently, this leads to consider optimal
quantization as a possible spatial discretization method to solve multi-dimensional (dis-
crete time) problems arising in numerical probability. An important motivation to tackle
these questions comes from finance since most problems arising in that field are naturally
multi-dimensional.

First, an application to numerical integration in medium dimension (1 ≤ d ≤ 4) was
developed and analyzed in [18]. A second step consisted in applying optimal quantization to
solve nonlinear problems related to a (discrete time) Markovian dynamics. A first example
was provided by discrete time optimal stopping problems (by the way of American option
pricing), still in a multi-dimensional setting (see [1], [3] and [4]). From a probabilistic point
of view, the nonlinearity usually appears through functionals of conditional expectations
that need to be computed. From a computational point of view, the quantization approach
leads to some tree algorithms in which, at every time step is associated a grid of quantizers,
assumed to be optimal in some sense for the Markov chain. Then, investigating various
fields of applications like stochastic control or nonlinear filtering, it turned out that it could
be useful to specialize the way one quantizes Markov chains according to the nature of
the encountered problem. This gave rise to two variants of the quantization: the marginal
quantization introduced in [1] that focused on the optimization of the marginal distributions
of the Markov chain and the Markovian quantization introduced in [19] that enhances
the approximation of the conditional distributions at some points. Both approaches are
presented here with some applications to finance, along with some further developments
(1st order schemes).
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The paper is organized as follows: Section 2 is devoted to general background on optimal
vector quantization of random vectors. First, the main properties concerning the existence
of an optimal quantization and its rate of convergence toward 0 as its size goes to infinity are
recalled. Then, numerical methods to get optimal quantizers and their associated weights
are described. A first application to numerical integration is presented which points out
in a simple setting the main features of this spatial discretization method. In Section 3,
we present the two methods used so far to quantize Markov chains, called marginal and
Markovian quantization methods. Both methods are applied to compute expectation of
functionals φ0(X0) . . . φ(Xn) of the Markov chain. Then, the main theoretical and com-
putational features of both methods are discussed. In Section 4, three main applications
to finance are described including some numerical illustrations: American option pricing,
stochastic control and filtering of stochastic volatility. Finally, in Section 5 we explain
on an example how one can design some first order schemes based on optimal quadratic
quantization that significantly improve the rate of convergence of the above methods.

Throughout the paper, | ξ | will denote the usual canonical Euclidean norm of ξ ∈ Rd.

2 Optimal quantization of a random vector

2.1 Existence and asymptotics of optimal quantization

The basic idea of quantization is to replace a Rd-valued random vector X ∈ Lp(Ω,P) by a
random vector taking at most N values in order to minimize the induced Lp-error i.e. one
wishes to solve the minimizing problem error

min
{
‖X − Y ‖p , Y : Ω → Rd, measurable , |Y (Ω)| ≤ N

}
.

Let Y : Ω → Rd be such a random vector and let Γ = Y (Ω). Then, consider a closest
neighbor rule projection ProjΓ : Rd → Γ and set,

X̂Γ := ProjΓ(X).

One easily checks that ‖X − X̂Γ‖p ≤ ‖X − Y ‖p . Assume |Γ| = N and Γ = {x1, . . . , xN}.
Closest neighbor rule projections ProjΓ are in one-to-one correspondence with Voronoi
tessellations of Γ, that is with Borel partitions C1(Γ), . . ., CN (Γ) of Rd satisfying:

Ci(Γ) ⊂
{

ξ ∈ Rd : |ξ − xi| = min
xj∈Γ

|ξ − xj |
}

, i = 1, . . . , N.

Then, one may set ProjΓ(ξ) :=
∑N

i=1 xi1Ci(Γ)(ξ) so that

X̂Γ =
N∑

i=1

xi1Ci(Γ)(X). (2.1)

In the sequel, the exponent Γ in X̂Γ will be often dropped.
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The Lp-error induced by this projection – called Lp-quantization error – is given by
‖X − X̂Γ‖p . It clearly depends on the grid Γ; in fact, one easily derives from (2.1):

‖X − X̂Γ‖p
p

= E
[

min
1≤i≤N

|X − xi|p
]

, (2.2)

for Γ = {x1, . . . , xN}. So, if one identifies a grid Γ of size N with the N -tuple x :=
(x1, . . . , xN )∈ (Rd)N or any of its permutation, the pth power of the Lp-quantization error
is a symmetric function Qp

N
defined on N -tuples with pairwise distinct components by

Qp
N

(x1, . . . , xN ) :=
∫

qp
N

(x, ξ)PX(dξ) (PX is for the distribution of X)

where qp
N

(x, ξ) := min
1≤i≤N

|xi − ξ|p, x = (x1, . . . , xN )∈ (Rd)N , ξ∈ Rd.

(The function p
√

qp
N is sometimes called local quantization error.) The extension of the

function Qp
N

on the whole (Rd)N is obvious.

Then two questions naturally arise: does this function reach a minimum? how does
this minimum behave as N goes to infinity? They have been investigated for a long time
as part of quantization theory for probability distributions, first in information theory and
signal processing in the 1950’s and, more recently in probability for both numerical or
theoretical purpose (see [13, 18]). They make up the core of optimal quantization. We will
now shortly recall these main results. For a comprehensive, one may consult [13] and the
references therein.

First, the size N being settled, the function p
√

Qp
N is Lipschitz continuous and does reach

a minimum (although Qp
N

does not go to infinity as max1≤i≤N |xi| → ∞). If |X(Ω)| ≥ N ,
then any N -tuple that achieves the minimum has pairwise distinct components i.e. defines
a grid Γ∗ of size N satisfying

‖X − X̂Γ∗‖p = min
{
‖X − Y ‖p , Y random vector in Rd, |Y (Ω)| ≤ N

}
. (2.3)

If |X(Ω)| is infinite, this minimum (strictly) decreases to 0 as N goes to infinity. Its rate of
convergence is ruled by the so-called Zador theorem, completed by several authors: Zador,
Bucklew & Wise (see [8]) and finally Graf & Luschgy in [13].

Theorem 2.1 (see [13]) Assume that E|X|p+ε < +∞ for some ε > 0. Then

lim
N

(
N

p
d min
|Γ|≤N

‖X − X̂Γ‖p
p

)
= Jp,d

(∫

Rd

g
d

d+p (ξ) dξ

)1+ p
d

(2.4)

where PX (dξ) = g(ξ) λd(dξ) + ν(dξ), ν ⊥ λd (λd Lebesgue measure on Rd). The constant
Jp,d corresponds to the case of the uniform distribution on [0, 1]d.

Remark 2.1 In higher dimension, the true value of Jp,d is unknown except in 1 dimension

where Jp,1 = 1
2p(p+1) . However, one shows that J2,2 = 5

18
√

3
and that Jp,d ∼

(
d

2πe

) p
2 as d

goes to infinity (see [13] for some proofs and other results using non Euclidean norms).
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This theorem says that min|Γ|≤N ‖X− X̂Γ‖p ∼ CPX ,p,dN
− 1

d . This is in accordance with
the rates O(N−1/d) easily obtained with orthogonal lattice grid of size N = md for the
uniform distribution U([0, 1]d) over the unit hypercube [0, 1]d. In fact, even in that very
specific setting, these lattice grids are not optimal quantizers for U([0, 1]d) (except if d = 1).
In fact optimal quantization provides for every N ≥ 1 the “best fitting” grid of size N for
a given distribution PX . This grid corresponds to the real constant CPX ,p,d when N goes to
infinity.

2.2 How to get optimal quantization?

At this stage, the next question clearly is: how to get numerically an optimal N -grid with
a minimal Lp-quantization error? Historically, the first attempt to solve this optimization
problem – when p = 2 and d = 1 – is the so-called “Lloyd’s methods I”. This iterative
procedure acts on the grids as follows: let Γ0 be a grid of size N . Then set by induction

Γs+1 = E [X |ProjΓs(X)] (Ω) = (E [X |X∈ Ci(Γs)])1≤i≤N , s ∈ N.

One shows that {‖X − ProjΓs(X)‖2 , s ∈ N} is a nonincreasing sequence and that, under
some appropriate assumptions (see [14]), ProjΓs(X) converges toward some random vector
X̂ taking N values as s goes to infinity. Moreover, X̂ satisfies the stationary quantizer
property

X̂ = E[X | X̂] (2.5)

and is the only solution to the original optimization problem argmin {‖X − Y ‖2 , |Y (Ω)| ≤ N}.
When the dimension d is greater than 1, the convergence may fail. When some con-

vergence holds, the limit X̂ is still stationary but has no reason to minimize the quadratic
quantization error. In a general setting, this algorithm has two main drawbacks: it is a
purely “local” procedure which does not explore the whole state space, and, furthermore,
it becomes numerically intractable in its original form since it requires the computation
of d-dimensional integrals

∫
C . . . dPX . When the random vector X is simulatable, one can

randomize the Lloyd’s methods I by using a Monte Carlo simulation to compute the above
integrals. This version is sometimes used as a final step of the optimization procedure to
“refine” locally the results obtained by other methods like that described below.

We will describe a procedure which partially overcomes these drawbacks, based on
another property of the Lp-quantization error function Qp

N
: its smoothness. Let us tem-

porarily identify a grid Γ := {x1, . . . , xN} of size N with the N -tuple x = (x1, . . . , xN ) and
let us denote the Voronoi tessel of xi by Ci(x) instead of Ci(Γ).

Proposition 2.1 ([18]) Let p > 1. The function Qp
N

is continuously differentiable at any
N -tuple x∈ (Rd)N having pairwise distinct components and a PX -negligible Voronoi tessel-
lation boundary ∪N

i=1∂Ci(x). Its gradient ∇Qp
N

(x) is obtained by formal differentiation:

∇Qp
N

(x) = E
[∇x qp

N
(x,X)

]
, (2.6)

where ∇x qp
N

(x, ξ) =
(

∂ qp
N

∂xi
(x, ξ)

)

1≤i≤N

:= p

(
xi − ξ

|xi − ξ| |x
i − ξ|p−11

Ci(x)
(ξ)

)

1≤i≤N

.(2.7)
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with the convention ~0
|~0| = ~0. If PX is continuous the above formula (2.6) still holds for p=1.

(Note that ∇xqp
N

(x, ξ) has exactly one non-zero component i(x, ξ) defined by ξ∈ Ci(x,ξ)(x).)

One shows (see [13], p.38) that any N -tuple x∗ ∈ argminQp
N

satisfies the “boundary”
assumption of Proposition 2.1 so that ∇Qp

N (x∗) = 0.

The integral representation (2.6) of ∇Qp
N

strongly suggests, as soon as independent
copies of X can be easily simulated on a computer, to implement a stochastic gradient
algorithm (or descent). It is a stochastic procedure recursively defined by

Γs+1 = Γs − (δs+1/p)∇x qp
N

(Γs, ξs+1) (2.8)

where the initial grid Γ0 has N pairwise distinct components, (ξs)s≥1 is an i.i.d. sequence
of PX -distributed random vectors, and (δs)s≥1 a sequence of (0, 1)-valued step parameters
satisfying the usual conditions:

∑
s

δs = +∞ and
∑

s

δ2
s < +∞. (2.9)

Note that (2.8) a.s. grants by induction that Γs has pairwise distinct components. In an
abstract framework (see e.g. [9] or [17]), under some appropriate assumptions, a stochastic
gradient descent associated to the integral representation of a so-called potential function
a.s. converges toward a local minimum of this potential function (Qp

N
in our problem).

Although these assumptions are not fulfilled by Qp
N

the encountered theoretical problems
can be partially overcome (see [18] for some a.s. convergence results in 1-dimension or when
PX is compactly supported). Practical implementation does provide satisfactory results (a
commonly encountered situation with gradient descents). Some estimates of the companion
parameters (PX -weights of the tessels and Lp-quantization errors) can be obtained as by-
product of the procedure. This is discussed below.

Stationary quantizers (Back to): When p = 2, standard computations show that
Equation∇Q2

N
(x) = 0 is simply the stationary quantizer property: if Γ is the corresponding

grid then, X̂Γ satisfies Equation (2.5). This identity has interesting applications (see the
next two paragraphs below). It also implies that, for every p∈ [1, +∞], ‖X̂Γ‖p ≤ ‖X‖p .

Note that non optimal quantizers may be stationary: when PX = P
X1 ⊗ · · · ⊗ PXd

is a
product measure, any “lattice grid” made up with optimal – or even stationary – quantizers
of its marginal distributions P

Xi is stationary. It can also be the case of any local minima
of Q2

N
which are the natural targets of the above stochastic gradient descent algorithm.

Practical aspects of the optimization, companion parameters: Formula (2.8)
can be developed as follows if one sets Γs := {x1,s, . . . , xN,s},

Competitive phase : select i(s + 1) := i(Γs, ξs+1) ∈ argmini|xi,s − ξs+1| (2.10)

Learning phase :

{
xi(s+1),s+1 := xi(s+1),s − δs+1

xi(s+1),s−ξs+1

|xi(s+1),s−ξs+1| |xi(s+1),s − ξs+1|p−1

xi,s+1 := xi,s, i 6= i(s + 1).
(2.11)

The competitive phase (2.10) corresponds to selecting the closest point in Γs i.e. i(s + 1)
such that ξs+1 ∈ Ci(s+1)(Γs). The learning phase (2.11) consists in updating the closest
neighbor and leaving still other components of the grid Γs.
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Furthermore, it is established in [18] that, if X ∈ Lp+ε (ε > 0), then the sequences
(Qr,s

N
)s≥1, 0 < r ≤ p, and (πs

i )t≥1, 1 ≤ i ≤ N , of random variables recursively defined by

Qr,s+1

N
:= Qr,s

N
− δs+1(Qr,s

N
− |xi(s+1),s − ξs+1|r), Qr,0

N
:= 0, (2.12)

πs+1
i := πs

i − δs+1(πs
i − 1{i=i(s+1)}), π0

i := 1/N, 1 ≤ i ≤ N. (2.13)

satisfy on the event {Γs → Γ∗}
Qr,s

N

a.s.−→ Qr
N

(Γ∗), 0<r≤p, and πs
i

a.s.−→ PX (Ci(Γ∗)), 1 ≤ i ≤ N, as s →∞.

These companion procedures are essentially costless since they are steps of the grid opti-
mization procedure itself and they yield the parameters of numerical interest (weights of
the Voronoi cells, Lr-quantization errors of Γ∗, 0 < r≤ p) for the grid Γ∗. Note that this
holds whatever the limiting grid Γ∗ is: this means that the procedure is consistent.

The quadratic case p = 2 is the most commonly implemented for applications and is
known as the Competitive Learning Vector Quantization (CLVQ) algorithm. Then one
considers (0, 1)-valued step parameters δs so that Γs+1 lives in the convex hull of Γs and
ξs+1 and the cooperative procedure (2.11) becomes a simple homothety centered at ξs+1

with ratio 1−δs+1. These features have a stabilizing effect on the procedure. One checks on
simulation that the CLVQ algorithm does behave better than its non-quadratic counterpart.
The numerical aspects of the CLV Q algorithm are deeply investigated in [21] when X is
d-dimensional Normal vector.

Figure 1 shows an optimal grid for the bivariate standard Normal distribution with 500
points. It is obtained by the CLV Q procedure described above.

2.3 Application to numerical integration

Consider a simulatable Rd-valued integrable random vector X with probability distribution
PX . The quantization method for numerical integration consists in approximating the
probability distribution PX by P

X̂
, the distribution of (one of) its closest neighbor rule

projection(s) X̂ = ProjΓ(X) on a grid Γ = {x1, . . . , xN}:

P
X̂

=
N∑

i=1

p̂i δxi .

So, P
X̂

is a discrete probability distribution whose weights p̂i are defined by

p̂i = P[X̂ = xi] = PX [Ci(Γ)], 1 ≤ i ≤ N,

where δxi is the Dirac mass at xi and Ci(Γ) = Proj−1
Γ (xi) denotes the Voronoi tessels of

xi ∈ Γ. Then, one approximates the expectation of a Lipschitz continuous function φ on
Rd w.r.t. PX , i.e.

E[φ(X)] =
∫

Rd

φ(ξ)PX (dξ),

by E[φ(X̂)] =
∫

Rd

φ(ξ)P
X̂

(dξ) =
N∑

i=1

p̂iφ(xi).
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The Lipschitz case: When φ is simply Lipschitz continuous, the induced error is then
simply measured by:

|E[φ(X)]− E[φ(X̂)]| ≤ [φ]Lip‖X − X̂‖1 , (2.14)

≤ [φ]Lip‖X − X̂‖p (p ≥ 1). (2.15)

Optimal grids (of size N) which minimize the L1-quantization error then provide a
O

(
N−1/d

)
rate. Such a grid, its associated weights p̂i and the induced L1-quantization

error can be computed by the algorithm described above. It often happens, for stability
matter, that one implements the algorithm in the quadratic case (CLV Q) and produces
an optimal quadratic grid Γ∗ and its companion parameters (the weights (p̂∗i )1≤i≤n and the
L1-quantization error ‖X− X̂Γ∗‖1 as a normalized error bound estimate). Some extensions
of (2.14) to locally Lipschitz continuous functions can be found in [11].

The Lipschitz derivative case: Assume now that function φ is continuously differen-
tiable with a Lipschitz continuous differential Dφ. Furthermore, assume that the quantiza-
tion is carried out with an optimal quadratic grid Γ. By Taylor’s formula, we have

|φ(X)− (φ(X̂) + Dφ(X̂).(X − X̂))| ≤ [Dφ]Lip |X − X̂|2

so that
∣∣∣E[φ(X)]− E[φ(X̂)]− E[Dφ(X̂).(X − X̂)]

∣∣∣ ≤ [Dφ]Lip‖X − X̂‖2
2
,

≤ [Dφ]Lip‖X − X̂‖2
p

(p ≥ 2).

Now, X̂ is in particular a stationary quantizer, hence it satisfies (2.5) so that

E[Dφ(X̂).(X − X̂)] = E
[
Dφ(X̂).E[X − X̂ | X̂]

]
= 0,

and |E[φ(X)]−E[φ(X̂)]| ≤ [Dφ]Lip‖X−X̂‖2
2

= O
(
N−2/d

)
. (2.16)

The convex case: When φ is a convex function and X̂ is a stationary quantizer satisfying
X̂ = E[X | X̂], we have by Jensen’s inequality:

E
[
φ(X̂)

]
= E

[
φ

(
E[X | X̂]

)]
≤ E[φ(X)], (2.17)

so that E[φ(X̂)] is always a lower bound for E[φ(X)].

2.4 A first numerical Test (European option approximation)

The aim of this section is to test the optimal quantizers that we obtained by the numerical
methods described in subsection 2.2 in dimension d = 4. Simultaneously, we aim to illus-
trate the performances of vector quantization for numerical integration. That is why we
carry out a short comparison between quantization method and Monte Carlo method on a
simple numerical integration problem.

Recall that the Strong Law of Large Numbers implies that, given a sequence (Zk)k≥1

of independent copies of a random vector Z with Normal distribution N (0; Id),

P(dω)-a.s.
f(Z1(ω)) + · · ·+ f(ZN (ω))

N

N→+∞−→ E(f(Z)) =
∫

Rd

f(z) exp (−|z|2/2)
dz

(2π)d/2
.
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for every f ∈ L1(Rd,PZ). The Monte Carlo method consists in generating on a computer
a path (Zk(ω))k≥1 to compute the above Gaussian integral. The Law of the Iterated
Logarithm says that, if f(Z)∈ L2, this convergence a.s. holds at a

σ(f(Z))

√
log log N

N

rate where σ(f(Z)) is the standard deviation of f(Z).
When f is twice differentiable, this is to be compared to the error bound provided

by (2.16) when using a quadratic optimal N -quantizer x∗ := (x∗1, . . . , x
∗
N ), namely

[Df ]LipQ
2
N (x∗) ≈

(
J2,d(1 + 2/d)1+d/2[Df ]Lip

)
N−2/d.

Consequently, the dimension d = 4 appears as the (theoretical) critical dimension for
the numerical integration of such functions by quantization for a given computational com-
plexity (quantization formulae involving higher order differentials yield better rates): one
assumes that the optimal quantizers have been formerly computed and that the computa-
tion times of a (Gaussian) random number and of a weight are both negligible w.r.t. the
computation time of a value f(z) of f .

The test is processed in each selected dimension d with five random variables gi(Z), i =
0, 1, 2, 3, 4 where the gi’s are five functions with compact support such that

– g0 is an indicator function of a (bounded) interval (hence discontinuous),

– g1 is convex and Lipschitz continuous,

– g2 is convex and twice differentiable,

– g3 is difference of two convex functions and Lipschitz continuous,

– g4 is difference of two convex functions and twice differentiable.

The test functions are borrowed from classical option pricing in mathematical finance:
one considers d traded assets S1, . . . , Sd, following a d-dimensional Black & Scholes dy-
namics. We assume that these assets are independent (this is not very realistic but
corresponds to the most unfavorable case for quantization). We assume as well that
S1

0 = s0 > 0, i = 1, . . . , d and that the d assets share the same volatility σi = σ > 0.
At maturity T > 0, we then have:

Si
T = s0 exp

(
(r − σ2

2
)T + σ

√
TZi

)
, i = 1, . . . , d.

One considers, still at time T , the geometric index IT =
(
S1

T . . . Sd
T

) 1
d satisfying

IT = I0 exp

(
(r − σ2

2d
)T +

σ
√

T√
d

Z1 + · · ·+ Zd

√
d

)
with I0 = s0 exp

(
−σ2(d− 1)

2d
T

)
.

Then, one specifies the random variables gi(Z) for i = 1 and i = 3 as follows

g1(Z) = e−rT (K1 − IT )+ (Put(K1, T ) payoff)

g3(Z) = e−rT (K2 − IT )+ − e−rT (K1 − IT )+, K1 < K2, (Put-Spread(K1,K2T ) payoff).

9



The random variables are the payoffs of a Put option with strike price K1 and a Put-spread
option with strike prices K1 < K2 respectively, both on the geometric index IT . Some closed
forms for the premia E[g1(Z)] and E[g2(Z)] are given by the Black & Scholes formula:

E[g1(Z)] = π(I0,K1, r, σ, T ) and E[g3(Z)] = ψ(I0,K1,K2, r, σ, T ) (2.18)

with π(x,K, r, σ, T ) = Ke−rT erf(−d2)− I0 erf(−d1),

d1 =
log(x/K) + (r + σ2

2d )T

σ
√

T/d
, d2 = d1 − σ

√
T/d

and ψ(x,K1,K2, r, σ, T ) = π(x,K2, r, σ, T )− π(x,K1, r, σ, T ).

Then, one sets

g2(Z) = e−rT/2π(IT
2
, K1, r, σ, T/2) and g4(Z) = e−rT/2ψ(IT

2
,K1,K2, r, σ, T/2).

The random variables g2(Z) and g4(Z) have the distributions of the (discounted) premia
at time T/2 of the Put(K1, T ) and of the Put-Spread(K1, K2, T ) respectively. Functions g2

and g4 are C∞ and using the martingale property of the discounted premia yields

E g2(Z) = π(I0,K1, r, σ, T ) and E g4(Z) = ψ(I0,K1, K2, r, σ, T ). (2.19)

Finally we specify g0 as the “hedge function at maturity” of the Put-Spread option:

g0(Z) = −e−rT1{IT∈[K1,K2]}. (2.20)

The numerical specifications of the functions gi’s are as follows:

s0 = 100, K1 = 98, K2 = 102, r = 5%, σ = 20%, T = 2.

• Numerical results in 4-dimension: The comparison with the Monte Carlo estimator

ĝi(Z)
N

=
1
N

N∑

k=1

gi(Zk), Zk i.i.d., Zk ∼ N (0; Id) (2.21)

of E[gi(Z)] is presented in the last column on the right: we first computed (a proxy of) the
standard deviation σ(ĝi(Z)

N
) of the above estimator (2.21) by a N = 10 000 trial Monte

Carlo simulation. Then, in order to measure the error induced by the quantization in the
scale of the MC estimator Standard Deviation, we wrote down the ratio absolute error

σ(ĝi(Z)
N

)
.

The results in Table 1 illustrate a widely observed phenomenon when integrating func-
tions by quantization: difference of convex functions behave better than convex functions
(this is obviously due to (2.17)), and Lipschitz derivative functions behave better than Lip-
schitz continuous functions (as predicted by (2.16)). The whole tests set suggests that the
convexity feature is prominent.
• Graphical comparison in dimensions d = 3, 4, 5: We focus her on the convex C2

function g2. We wish to emphasize the dimension effect (keeping unchanged the other
specifications). So, we depict in Figure 2, in dimension d = 3, 4, 5 (in a log-log scale), both
the absolute error and the standard deviation σ(ĝ2(Z)

N
) of its Monte Carlo estimator as a

function of N (the dotted lines are the induced least square regressions)
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d = 4 B&S Quantized Relative σ(ĝi(Z)
N

) absolute error

& N = 6540 Reference value value error σ(ĝi(Z)
N

)

E g0(Z) −0.093 −0, 091 2.40% 0.034 0.064
E g1(Z) 2.077 2.047 1.44% 0.054 0.548
E g2(Z) 2.077 2.061 0.77% 0.033 0.482
E g3(Z) 1.216 1.213 0.26% 0.021 0.015
E g4(Z) 1.216 1.215 0.08% 0.012 0.001

Table 1: Quantization versus Monte Carlo in 4-dimension.

Concerning the dimensionality effect, the theoretical rates for the error bounds (N−1/d

in the Lipschitz case and N−2/d for Lipschitz differential case) are confirmed: when d ≤ 4
quantization overperforms more and more the Monte Carlo method as N increases. When
d > 4, this is at most true up to a critical number Nd of points (for a given trust level in
the MC method). More detailed numerical results are presented in [21].

Remark 2.2 In the above tests, we compared quantization versus Monte Carlo for the
computation of a single integral. If one looks for a uniform error bound over an infinite
class of Lipschitz continuous functions, the conclusion can be quite different: thus, with
the notations of the former subsection 2.3

sup
f, [f ]

Lip
≤1

∣∣∣∣
f(Z1) + · · ·+ f(ZN )

N
−

∫

Rd

f(ζ)PZ(dζ)
∣∣∣∣ ≥

∫

Rd

min
1≤i≤N

|Zi − ζ|PZ(dζ)

≥ Q1
N

(Z1, . . . , ZN )

> min
(Rd)N

Q1
N
∼ cZ

N
1
d

, (cZ > 0).

This means that for every fixed N the worst behaviour of the Monte Carlo method on 1-
Lipschitz functions induces a greater error than that obatined by optimal L1-quantization.
This holds true in any dimension d.

3 Optimal quantization of a Markov chain

We consider an Rd-valued (Fk)-Markov chain (Xk)0≤k≤n, with probability transition Pk(x, dx′)
(from time k − 1 to k) and with initial distribution µ for X0. The joint distribution of
(Xk)0≤k≤n, is then equal to µ(dx0)P1(x0, dx1) . . . Pn(xn−1, dxn).

In this section, we are interested in the quantization of this Markov chain, i.e. an
approximation of the distribution of the process (Xk) by the distribution of a process
(X̂k) valued on finite grids taking into account the probabilistic feature of the process.
The naive approach would consist in the quantization of the R(n+1)d-valued random vector
(X0, . . . , Xn) following the method described in Section 2. However, by Theorem 2.1, for a
total number N of points in such a “time-space” grid, the Lp-quantization error would be
of order N− 1

nd . This is of course very slow when n is large.
Instead, we propose an approach based on the fact that a Markov chain is completely

characterized by its initial distribution and its transitions probabilities. The idea is then

11



to “quantize” the initial distribution of X0 and the conditional probabilities of Xk given
Xk−1. We propose two different quantization methods which shall provide a better rate of
convergence of order n1+1/d/N1/d. The first approach, based on a quantization at each time
k of the random variable Xk, was introduced in [1] and is called marginal quantization. The
second one that enhances the preservation of the dynamics, namely the Markov property,
was introduced in [19] and is called Markovian quantization.

3.1 Marginal quantization

At each time k and given a grid Γk = {x1, . . . , xNk} of Nk points in Rd, associated to a
Voronoi tessellation C1(Γk), . . . , CNk

(Γk), we define:

X̂k = ProjΓk
(Xk), k = 0, . . . , n. (3.1)

Hence, in the marginal approach, the emphasis is put on the accuracy of the distribution
approximations: if at every time k, the grid Γk is Lp-optimal, then X̂k is the best possible
Lp-approximation of Xk by a random variable taking Nk := |Γk| points. Notice that since
the projection on the closest neighbor is not injective, the process (X̂k)k constructed in
(3.1) is not a Markov chain. However, if we define the probability transition matrices [p̂ij

k ]
at times k = 1, . . ., n by:

p̂ij
k = P

[
X̂k = xj

k | X̂k−1 = xi
k

]
=

β̂ij
k

p̂i
k−1

, i = 1, . . . , Nk−1, j = 1, . . . , Nk,

where p̂i
k−1 = P[X̂k−1 = xi

k−1] = P[Xk−1 ∈ Ci(Γk−1)]

β̂ij
k = P[X̂k−1 = xi

k−1, X̂k = xj
k] = P[Xk−1 ∈ Ci(Γk−1), Xk ∈ Cj(Γk)].

then it is well-known that there exists a Markov chain (X̂c
k) with initial distribution p̂0

and probability transition matrices [p̂ij
k ] at times k = 1, . . . , n. The marginal quantization

method consists in approximating the distribution of the Markov chain (Xk)0≤k≤n by that
of the Markov chain (X̂c

k)0≤k≤n: by construction, the conditional distribution of X̂c
k+1 given

X̂c
k is equal to the the conditional distribution of X̂k+1 given X̂k, and the distribution of X̂c

0

is equal to the distribution of X̂0. We will evaluate the rate of approximation (in distribu-
tion) of X̂c toward X on functions of the form (x0, x1, . . . , xn) 7→ φ0(x0)φ1(x1) . . . φn(xn),
where φ0, . . ., φn are bounded Lipschitz continuous functions on Rd. First, notice that
both quantities E[φ0(X0)φ1(X1) . . . φn(Xn)] and E[φ0(X̂c

0)φ1(X̂c
1) . . . φn(X̂c

n)] follow a dy-
namic programming formula induced by the Markov property. Namely

E [φ0(X0) . . . φn(Xn)] = E [v0(X0)] and E
[
φ0(X̂c

0) . . . φn(X̂c
n)

]
= E

[
v̂0(X̂c

0)
]

where v̂0(X̂c
0) and v0(X0) satisfy

vn(Xn) = φn(Xn), vk−1(Xk−1) = φk−1(Xk−1)E[vk(Xk) |Xk−1], k = 1, . . . , n(3.2)

v̂n(X̂c
n) = φn(X̂c

n), v̂k−1(X̂c
k−1) = φk−1(X̂c

k−1)E[v̂k(X̂c
k) | X̂c

k−1], k = 1, . . . , n.(3.3)

12



This will be the key to evaluate the error induced by approximating the first expectation
term by the second one. Furthermore, the dynamic programming formula for X̂c, once
written “in distribution”, provides a simple numerical algorithm to compute E

[
v̂0(X̂c

0)
]
:

v̂n(xi
n) = φn(xi

n), ∀xi
n ∈ Γn,

v̂k−1(xi
k−1) = φk−1(xi

k−1)E[v̂k(X̂k) | X̂k−1 = xi
k−1]

= φk−1(xi
k−1)

Nk∑

j=1

p̂ij
k v̂k(x

j
k), ∀xi

k−1 ∈ Γk−1, k = 1, . . . , n. (3.4)

E
[
v̂0(X̂c

0)
]

= E
[
v̂0(X̂0)

]
=

N0∑

i=1

p̂i
0 v̂0(xi

0).

We rely on the following Lipschitz assumption on the transitions Pk of the Markov chain
(Xk).

(A1) For any k = 1, . . . , n, the probability transition Pk is Lipschitz with ratio [Pk]Lip ,
i.e. for any Lipschitz function φ on Rd, with ratio [φ]Lip , we have:

∣∣∣∣
∫

Rd

φ(x′)Pk(x, dx′)−
∫

Rd

φ(x′)Pk(x̂, dx′)
∣∣∣∣ ≤ [Pk]Lip [φ]Lip |x− x̂|, ∀x, x̂ ∈ Rd.

Then we set [P ]Lip = maxk=1,...,n[Pk]Lip . Let

BL1(Rd) =
{

φ : Rd → R, φ is bounded by 1 and φ is Lipschitz with ratio [φ]Lip ≤ 1
}

.

Theorem 3.1 Let p ≥ 1. Under (A1), we have the error estimation in the marginal
quantization method: for any functions φk ∈ BL1(Rd), k = 0, . . . , n,

∣∣∣E[φ0(X0). . .φn(Xn)]− E[φ0(X̂c
0). . .φn(X̂c

n)]
∣∣∣ ≤

n∑

k=0

(
1+(2−δ2,p)

[P ]n−k+1
Lip

−1

[P ]Lip−1

)
‖∆k‖p , (3.5)

where ‖∆k‖p = ‖Xk − X̂k‖p is the Lp-quantization error at time k of Xk. In (3.5), we
make the usual convention that 1

u−1(um − 1) = m if u = 1 and m ∈ N.

Proof. We set ‖φ‖sup = maxk=0,...,n ‖φk‖sup ≤ 1 and [φ]Lip = maxk=0,...,n[φk]Lip ≤ 1. From
(3.2), a standard backward induction shows that

‖vk‖sup ≤ ‖φ‖n+1−k
sup

and [vk]Lip ≤ [P ]Lip‖φ‖sup [vk+1]Lip + ‖φ‖n−k
sup

[φ]Lip

so that [vk]Lip ≤ ‖φ‖n−k
sup

[φ]Lip

[P ]n−k+1
Lip

− 1

[P ]Lip − 1
.

For any bounded Borel function f on Rd, we set

Pkf(x) = E[f(Xk)|Xk−1 = x], x ∈ Rd

P̂kf(x) = E[f(X̂k)|X̂k−1 = x], x ∈ Γk−1,
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for k = 1, . . . , n. Hence, by (3.2) and (3.4), we have
∥∥∥vk(Xk)− v̂k(X̂k)

∥∥∥
p

≤
∥∥∥vk(Xk)− E[vk(Xk)|X̂k]

∥∥∥
p

+
∥∥∥E

[(
φk(Xk)− φk(X̂k)

)
Pk+1vk+1(Xk)

∣∣∣ X̂k

]∥∥∥
p

+
∥∥∥φk(X̂k)E

[
Pk+1vk+1(Xk)− P̂k+1v̂k+1(X̂k)

∣∣∣ X̂k

]∥∥∥
p

.(3.6)

On one hand, notice that, for every p ≥ 1,

‖vk(Xk)− E(vk(Xk)|X̂k)‖p ≤ ‖vk(Xk)− vk(X̂k)‖p + ‖vk(X̂k)− E(vk(Xk)|X̂k)‖p

≤ 2‖vk(Xk)− vk(X̂k)‖p

≤ 2[vk]Lip‖∆k‖p . (3.7)

When p = 2, the very definition of the conditional expectation as an orthogonal projection
shows that the above inequality holds without the 2 factor. On the other hand, using that
conditional expectation (given X̂k) is a Lp-contraction and that X̂k is σ(Xk)-measurable
yields
∥∥∥E

[(
φk(Xk)− φk(X̂k)

)
Pk+1vk+1(Xk)

∣∣∣ X̂k

]∥∥∥
p

≤ [φ]Lip‖vk+1‖sup‖∆k‖p ≤ [φ]Lip‖φ‖n−k
sup

‖∆k‖p

(3.8)
and
∥∥∥φk(X̂k)

(
E

[
Pk+1vk+1(Xk)− P̂k+1v̂k+1(X̂k)

∣∣∣ X̂k

])∥∥∥
p

≤ ‖φ‖sup‖vk+1(Xk+1)−v̂k+1(X̂k+1)‖p .

(3.9)
Plugging inequalities (3.7), (3.8) and (3.9) in (3.6) leads to the backward induction formula

‖vk(Xk)− v̂k(X̂k)‖p ≤ ((2− δ2,p)[vk]Lip + [φ]Lip‖φ‖n−k
sup

)‖∆k‖p

+ ‖φ‖sup‖vk+1(Xk+1)− v̂k+1(X̂k+1)‖p

≤ [φ]Lip‖φ‖n−k
sup

(
1 + (2− δ2,p)

[P ]n−k+1
Lip

− 1

[P ]Lip − 1

)
‖∆k‖p

+‖φ‖sup‖vk+1(Xk+1)− v̂k+1(X̂k+1)‖p

with vn = v̂n ≡ φn. This yields the expected result after some standard computations. 2

3.2 Markovian quantization

Here, we suppose that the dynamics of the (Fk) Markov chain (Xk)k is given in the form:

Xk = Fk(Xk−1, εk), k = 1, . . . , n (3.10)

(starting from some initial state X0), where (εk)k is a sequence of identically distributed
Fk-measurable random variables in Rm, such that εk is independent of Fk−1, and Fk is
some measurable function on Rd × Rm. Given a sequence of grids Γk = {x1, . . . , xNk} of
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Nk points in Rd, associated to a Voronoi tessellation C1(Γk), . . . , CNk
(Γk), k = 0, . . . , n, we

define the process (X̂k)k by:

X̂k = ProjΓk
(Fk(X̂k−1, εk)), k = 1, . . . , n, (3.11)

and X̂0 = ProjΓ0
(X0). By construction, the process (X̂k)k is still a Markov chain w.r.t.

the same filtration (Fk). Its probability transition matrix [p̂ij
k ] at times k = 1, . . . , n reads:

p̂ij
k = P

[
X̂k = xj

k|X̂k−1 = xi
k

]
=

β̂ij
k

p̂i
k−1

, i = 1, . . . , Nk−1, j = 1, . . . , Nk, (3.12)

where p̂i
k−1 = P[X̂k−1 = xi

k−1] =

{
P[Fk(X̂k−2, εk−1) ∈ Ci(Γk−1)], if k ≥ 2

P[X̂0 ∈ Ci(Γ0)] if k = 1,
(3.13)

and β̂ij
k = P[X̂k−1 = xi

k−1, X̂k = xj
k]

=

{
P[F (X̂k−2, εk−1) ∈ Ci(Γk−1), Fk(X̂k−1, εk) ∈ Cj(Γk)], if k ≥ 2

P[X̂0 ∈ Ci(Γ0), F (X̂0, ε1) ∈ Cj(Γk)], if k = 1.

We still intend to estimate the approximation of (Xk) by the Markov quantized pro-
cess (X̂k) along functions (x0, x1, . . . , xn) 7→ φ0(x0)φ1(x1) . . . φn(xn), φ0, . . ., where φn are
bounded Lipschitz continuous functions on Rd. This time, the quantized process (X̂k) it-
self being a Markov chain, one may compute directly E[ φ0(X̂0)φ1(X̂1) . . . φn(X̂n)]. This
quantity can be obtained as the final result of a backward dynamic programming formula
formally identical to (3.4) but where the coefficient [p̂ij

k ] and p̂i
0 are given by (3.12) and (3.13)

i.e. are based on the Markov chain (X̂k)0≤k≤n described in (3.11).

We will rely now on a pathwise Lipschitz assumption on the Markov chain (Xk)0≤k≤n:

(A1’) For any k = 1, . . . , n, there exists some positive constant [Fk]Lip such that:

‖Fk(x, εk)− Fk(x̂, εk)‖1 ≤ [Fk]Lip |x− x̂|, ∀x, x̂ ∈ Rd.

We then set [F ]Lip = maxk=1,...,n[Fk]Lip .

Theorem 3.2 Under (A1’), we have the error estimation in the Markov quantization
method: for any functions φk ∈ BL1(Rd), k = 0, . . . , n,

∣∣∣E [φ0(X0) . . . φn(Xn)]− E
[
φ0(X̂0) . . . φn(X̂n)

]∣∣∣ ≤
n∑

k=0

[F ]n−k+1
Lip

− 1

[F ]Lip − 1
‖∆k‖1 , (3.14)

where ‖∆k‖1 = ‖Fk(X̂k−1, εk)− X̂k‖1 (3.15)

is the L1-quantization error at time k of Fk(X̂k−1, εk). In (3.14), we make the usual
convention that 1

u−1(um − 1) = m if u = 1 and m ∈ N.

Proof. Set ‖φ‖sup = max
k=0,...,n

‖φk‖sup ≤ 1 and [φ]Lip = max
k=0,...,n

[φk]Lip ≤ 1. We also denote

Lk =
k∏

j=0

φj(Xj) and L̂k =
k∏

j=0

φj(X̂j).
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We then have

Lk − L̂k =
(
φk(Xk)− φk(X̂k)

)
Lk−1 + (Lk−1 − L̂k−1)φk(X̂k).

From the boundedness and Lipschitz conditions on φk, we deduce that
∣∣∣Lk − L̂k

∣∣∣ ≤ ‖φ‖k
sup

[φ]Lip

∣∣∣Xk − X̂k

∣∣∣ + ‖φ‖sup

∣∣∣Lk−1 − L̂k−1

∣∣∣ ,

for all k = 1, . . . , n. By a straightforward backward induction, we get

|Ln − L̂n| ≤ ‖φ‖n
sup

[φ]Lip

n∑

k=0

|Xk − X̂k|. (3.16)

On the other hand, from the definitions (3.10) and (3.11) of Xk and X̂k, and (3.15) of
∆k, we obviously get for any k ≥ 1:

‖Xk − X̂k‖1 ≤ ‖Fk(Xk−1, εk)− Fk(X̂k−1, εk)‖1 + ‖∆k‖1 .

By Assumption (A1’) and since εk is independent of Fk−1, we then obtain:

‖Xk − X̂k‖1 ≤ [Fk]Lip‖Xk−1 − X̂k−1‖1 + ‖∆k‖1 .

Recalling that ‖X0 − X̂0‖1 = ‖∆0‖1 , we deduce by backward induction that:

∀ k∈ {0, . . . , n}, ‖Xk − X̂k‖1 ≤
k∑

j=0

[F ]k−j
Lip

‖∆j‖
1
. (3.17)

Finally, using (3.16) and (3.17), one completes the proof noting that
∣∣∣E [φ0(X0) . . . φn(Xn)]− E

[
φ0(X̂0) . . . φn(X̂n)

]∣∣∣ ≤ ‖Ln − L̂n‖1

≤ ‖φ‖n
sup

[φ]Lip

n∑

k=0

k∑

j=0

[F ]k−j
Lip

‖∆j‖
1

≤ ‖φ‖n
sup

[φ]Lip

n∑

j=0

(
n−j∑

k=0

[F ]k
Lip

)
‖∆j‖

1
. 2

3.3 Comparison of both methods

Theoretical aspects: The marginal and the Markovian quantization processes were
assigned two different objectives. The marginal quantization process is originally designed
to optimize the marginal distribution approximation at every time step k = 0, . . . , n, namely

‖X̂k −Xk‖p = min
{‖Y −Xk‖p , |Y (Ω)| ≤ Nk

}

(with in mind some algorithmic stability properties of the grid optimization). Then, at every
time k, the conditional distribution L(Xk+1 |Xk = x) = P (x, dy) for a point x ∈ Ci(Γk)
(i.e. x in the tessel of xi

k) is approximated by

L(Xk+1 |Xk = x) ≈ L(ProjΓk+1
(Xk+1) |ProjΓk

(Xk) = x)

=
1

PXk
(Ci(Γk))

∫

Ci(Γk)
Pk+1(x, dy) ◦ Proj−1

Γk+1
PXk

(dx). (3.18)
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This induces a loss of the Markov property.
In contrast, the Markovian quantization is designed at every time k = 0, . . . , n − 1 to

optimize the approximation of the transition Pk+1(x, dy) = Fk+1(x,Pεk+1
)(dy) of the chain

at the points of the quantizing grid xi
k∈ Γk (in Lp(P

X̂k
)), namely

‖X̂k+1 − Fk+1(X̂k, εk+1)‖p = min{‖Y − Fk+1(X̂k, εk+1)‖p , |Y (Ω)| ≤ Nk+1}}.

In this approach, for every x∈ Ci(Γk), one approximates

L(Xk+1 |Xk = x) ≈ L(X̂k+1 | X̂k = xi
k) = Pk+1(xi

k, dy) ◦ Proj−1
Γk+1

(3.19)

Then the Markov property w.r.t. the filtration of (Xk)0≤k≤n is preserved.

In the marginal quantization, the conditional distributions are not approximated by a
specific optimization process, but by averaging the transition w.r.t. the marginal distribu-
tion over the Voronoi tessellation of the best possible grid. In the Markovian approach, the
conditional distributions are obtained by an optimization procedure which minimizes the
error induced at the points of the grid.

One may notice by looking at the a priori estimates (3.5) and (3.14) that, provided that
Assumption (A’1) is satisfied, both approaches lead to quite similar a priori error bound
structures: they differ by the Lipschitz constants [P ]Lip in the marginal quantization and
[F ]Lip in the Markovian quantization on one hand and by some multiplicative factor (in favor
of the Markovian quantization) on the other hand. It is easy to prove that the inequality
[F ]Lip ≤ [P ]Lip always holds and in many “regular” models (like Lipschitz mixing models,
Gaussian Euler schemes of diffusions, etc), the inequality stands as an equality. On the
other hand, the multiplicative factor appearing in the marginal quantization is likely to
be an artifact of the method of proof. Overall, the assets and drawbacks of both methods
essentially annihilate each other.

Then, how to discriminate between the two quantization methods?
One first difference lies in the proofs: the general a priori error bounds like (3.14)

are significantly easier to get by Markovian approach and so far, provided slightly lower
theoretical constants.

When F is the Euler scheme of a diffusion process over [0, T ] with Lipschitz coefficients,
then [P ]Lip ≤ [F ]Lip = 1+ cT /n, where the time step is T/n. Then, in both methods, if one
assigns N/(n + 1) elementary quantizers to each grid Γk and assumes this grid is optimal,
inequalities (3.5) and (3.14) lead to the structure of a priori global error bound, namely

∀n, N ≥ 1, Error(n,N) = O

(
n

(N/n)1/d

)
= O

(
n1+1/d

N1/d

)

In fact, without any further assumption on the probability density functions of the L(Xk)’s,
the above bound is only heuristic since it is impossible to control the rates of convergence
in the asymptotics of the n optimal quantization errors. So far, this control turned out
to be possible with marginal quantization under some domination-scaling property (see
e.g. [1] for American option pricing but has no rigorous counterpart with Markovian quan-
tization (see [19] for such a situation). The preservation of the Markov property maybe
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induces a greater degeneracy of the “innovation process”: thus, there is more randomness
in ProjΓk

(Xk) where Xk follows (3.10) than in ProjΓk
(F (X̂k−1, εk)) in (3.11).

So, when the choice is possible, it seems to be essentially motivated by the constraints of
the problem: thus, the Markovian quantization, being a Markov chain w.r.t. the filtration
of the original chain Xk, seems more appropriate for control problems (for which it was
originally designed. . . ) whereas marginal quantization yield more satisfactory results in
optimal stopping problems (for which it was originally designed. . . ). But once again, it
may be only an artifact.

Let us mention however that the marginal quantization requires only some weak con-
vergence Lipschitz assumption on the chain (namely [P ]Lip < +∞) while the Markovian
quantization requires some Lp-pathwise Lipschitz assumption (namely [F ]Lip < +∞). It
may happen that the first approach turns out to be the only available one because

[P ]Lip < +∞ = [F ]Lip .

This is, for example, the case for Markovian dynamics like

Xk+1 = F (Xk, εk+1) with F (x, ε) := sign(x− ε)G(x, ε),

where (εk)k is an i.i.d. sequence, Pε1(du) = g(u) λq(du) (λq lebesgue measure on Rq) and
(x, ε) 7→ G(x, ε) is Lipschitz continuous in x uniformly in ε with ratio [G]Lip . Then, one
shows that

[P ]Lip = [G]Lip < +∞ whereas x 7→ F (x, ε1) = sign(x− ε1)G(x, ε1) is not continuous.

Computational aspects: Although, both dynamic programming formulae are formally
identical and the fact that, in both cases, the grid optimization phase consists in processing
a chain of stochastic gradient descents, one for each time step, the optimization phases
are radically different for the marginal and the Markovian quantization processes. Since,
these procedures have been extensively described in [1] and [19], we refer to these papers
for details of implementation.

We wish to discuss here what make them different. First, they lead to different optimal
grids with different transition matrices (using the same set of grids to process the marginal
and the Markovian methods would provide two different sets of transition matrices).

In the marginal quantization, the optimization consists in two steps

– Computation for every k = 0, . . . , n of grids Γ∗k which minimize over all grids of size
Nk, the Lp-quantization error ‖∆k‖p i.e. solving

argminΓk
{‖Xk − ProjΓk

(Xk)‖p , |Γk| ≤ Nk} (3.20)

– Estimation of the companion parameters i.e. the resulting transition matrices [p̂ij
k ]

and the quantization errors ‖Xk − ProjΓ∗k(Xk)‖p .

At every step k, the optimization problem (3.20) only depends on the distribution of Xk.
The main consequence is that if one looks carefully at the recursive stochastic algorithm
described in Section 2.2., the optimization of the grid Γk at the kth time step only depends
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on the simulation of a large number M of independent copies of Xk. So if one simulates
on a computer M independent paths of the whole chain (Xk)0≤k≤n, all the grids can be
optimized independently by simply implementing procedures (2.10), (2.11).

The estimation of the companion parameters can be carried out “on line” as described in
the algorithm of Section 2.2 using (2.12) and (2.13). It may be more efficient to carry on the
companion parameter estimation after the grid optimization is achieved: once the optimal
grids are settled, the companion parameter estimation procedure becomes a standard Monte
Carlo simulation.

At a first glance, in the Markovian quantization, the two steps look similar. However,
since X̂k = ProjΓk

(F (X̂k−1, εk)), the Lp-optimization problem for the kth grid Γ∗k reads

argminΓk
{‖F (X̂k−1, εk)− ProjΓk

(F (X̂k−1, εk))‖p , |Γk| ≤ Nk}. (3.21)

Consequently, the optimization of the grids Γk at time k does depend on the distribution
of X̂k−1, i.e. essentially upon Γ∗k−1. This means that the grid optimization phase of a
quantized markov chain is deeply recursive: any optimization default at time k is propagated
at times ` ≥ k, inducing a great instability of the global optimization process.

This provides an interpretation for a usually observed phenomenon: numerical grid
optimization works much better with marginal quantization than Markovian quantization.
It is in accordance with the idea that it is more difficult to estimate accurately conditional
distributions than marginal ones.

4 Some applications in finance

4.1 Optimal stopping problems and pricing of multi-dimensional Ameri-

can options

We consider a multidimensional diffusion X = (X1, . . . , Xd)∗ governed by:

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x0, (4.1)

where b, σ are functions on Rd valued in Rd and Rd×m, satisfying usual growth and Lipschitz
conditions, and W is a m-dimensional standard Brownian motion on a filtered probability
space (Ω,F ,F = (Ft)t,P).

Given a reward process (g(t,Xt))t∈[0,T ], where g is some continuous function on [0, T ]×
Rd, Lipschitz continuous in x, we consider the optimal stopping problem:

Vt = ess sup
τ∈Tt,T

E [g(τ, Xτ )|Ft] . (4.2)

Here Tt,T denotes the set of stopping times valued in [t, T ] and V is called the Snell envelope
of (g(t,Xt))t∈[0,T ].

We first approximate this continuous-time optimal stopping problem by a discrete-time
optimal stopping problem where the set of possible stopping times is valued in {kT/n :
k = 0, . . . , n} for n large. When the diffusion X is not simulatable, we approximate it by
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a discretization scheme, and we denote by Xk this approximation at time tk = kT/n of X.
For example, in the case of an Euler scheme with step T/n, we have:

X0 = x0, Xk+1 = Xk + b(Xk)
T

n
+ σ(Xk)

√
T

n
εk+1

=: F (Xk, εk+1), k = 0, . . . , n− 1,

where εk+1 = (Wtk+1
−Wtk)/

√
h is a centered Gaussian random variable in Rm with variance

Im, independent of Fk := Ftk . The process (Xk) is a Markov chain w.r.t. the filtration
(Fk). The associated discrete-time optimal stopping problem is:

V k = ess sup
τ∈T k,n

E
[
g(τT/n,Xτ )|Fk

]
, (4.3)

where T k,n denotes the set of stopping times (with respect to the filtration (Fk)) valued in
{j : j = k, . . . , n}.

We have the classical time discretization error estimation:

max
k=0,...,n

‖VkT/n − V k‖p ≤
Cb,σ√

n

In fact, if g is slightly more regular, namely semi-convex and if one replaces the Euler
scheme by the diffusion itself sampled at times kT/n, the above bound holds with Cb,σ

n .

It is well-known that the Snell envelope (V k)k of (g(tk, Xk))k satisfies V k = vk(Xk),
k = 0, . . . , n, where the Borel functions vk on Rd are given by the backward dynamic
programming formula:

vn(x) = g(T, x), ∀x ∈ Rd,

vk(x) = max
(
g(tk, x),E[vk+1(Xk+1)|Xk = x]

)
, ∀x ∈ Rd, k = 0, . . . , n− 1.

This backward formula remains intractable for numerical computations since it requires to
compute at each time step k = 0, . . . , n, conditional expectations of Xk+1 given Xk = x at
any point x ∈ Rd of the state space of (Xk).

The quantization approach for solving this problem is to first approximate the Markov
chain (Xk) by a quantized Markov chain as described in Section 3. This means that at each
time tk, k = 0, . . . , n, we are given an (optimal) grid Γk = {x1

k, . . . , x
Nk
k } of Nk points in Rd,

and we approximate the distribution X0 by the distribution of X̂0 = ProjΓ0
(X0), and the

conditional distribution of Xk+1 given Xk by the conditional distribution of X̂k+1 given X̂k:
for k ≥ 1, X̂k is defined by X̂k = ProjΓk

(Xk) in the marginal quantization method, while
X̂k = ProjΓk

(F (X̂k−1, εk)) in the Markovian quantization method. We then approximate
the functions vk by the functions v̂k defined on Γk, k = 0, . . . , n, by the backward dynamic
programming formula or optimal quantization tree descent:

v̂n(xi
n) = g(T, xi

n), ∀xi
n ∈ Γn (4.4)

v̂k(xi
k) = max

(
g(tk, xi

k),E[v̂k+1(X̂k+1)|X̂k = xi
k]

)
(4.5)

= max


g(tk, xi

k),
Nk+1∑

j=1

p̂ij
k+1v̂k+1(x

j
k+1)


 , xi

k ∈ Γk, k = 0, . . . , n− 1, (4.6)
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where p̂ij
k+1 = P

[
X̂k+1 = xj

k+1|X̂k = xi
k

]
.

Then one gets an approximation of the process (V k) by the process (V̂k)k, with V̂k =
v̂k(X̂k). Namely, if the diffusion is uniformly elliptic, with coefficients b and σ either
bounded Lipschitz continuous or C∞b (Rd) and if the obstacle function g is Lipschitz over
[0, T ]×Rd, then the following error estimation holds for an Lp-optimal marginal quantiza-
tion (see [1]):

max
0≤k≤n

‖V k − V̂k‖p ≤ Cb,σ,T,p
n1+1/d

N1/d
, (4.7)

where N =
∑n

k=0 Nk is the total number of points to be dispatched among all grids Γk.
This estimate strongly relies on the sub-Gaussian upper-bound for the probability den-

sity of the diffusion density. The same bound holds if one substitutes the diffusion sampled
at times tk, k = 0, . . . , n to its Euler scheme.

Numerical illustration As a numerical illustration, we consider a 2d-dimensional un-
correlated Black-Scholes model with geometric dividends, i.e. for x = (x1, . . . , x2d)∗∈ R2d,
b(x) = −(µ1x1, . . . , µ2dx2d), σ(x) is a 2d× 2d diagonal matrix with ith diagonal term σi x

i,
where σi, i = 1, . . . , d are constant volatilities. We assume that the short-term interest rate
is zero. The American option price at time t of a payoff function (g(Xt)) is given by:

Vt = ess sup
τ∈Tt,T

E [g(Xτ )|Ft] , (4.8)

which is computed by the above algorithm. We consider an American 2d-dim exchange
option characterized by the payoff

g(t, x) = max
(
x1 . . . xd − xd+1 . . . x2d, 0

)

with the following market parameters

x1
0 . . . xd

0 = 36, xd+1
0 . . . x2d

0 = 40, σi = 20d−
1
2 %, µ1 = 5%, µ2 = . . . = µ2d = 0.

Our reference price is obtained by a specific difference method devised in [22] for 2-
dimension. We reproduce in Figures 3 and 4 for 2d = 4 and 6 the graphs θ 7→ V̂0(θ) where
V̂0(θ) denotes the premium at time 0 of the above American option when time to maturity
θ runs over {k/n, k = 1, . . . , n}. The numerical parameters are settled as follows: n = 25,
k time discretization steps when θ = k/n, and

N25 = 750 if 2d = 4 and N25 = 1 000 if 2d = 6.

The sizes Nk of the grid Γk is specified following the dispatching rule given in [1].

4.2 A stochastic control problem: mean-variance hedging of options

4.2.1 Error bounds using the Markovian quantization

We consider the following portfolio optimization problem. The dynamics of the controlled
process is governed by:

dXt = b(Xt) dt + σ(Xt) dWt,

dYt = α∗t dXt, Y0 = y0,
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where b, σ are functions on Rd valued in Rd and Rd × m, satisfying usual growth and
Lipschitz conditions, and W is a m-dimensional standard Brownian motion on a filtered
probability space (Ω,F ,F = (Ft)t,P). The control process α = (αt)t is an F-adapted
process valued in some subset A of Rd. We denote by A the set of such control processes.
Here, X = (X1, . . . , Xd)∗ represents the dynamics of risky assets and/or volatility, Y is
the (self-financed) wealth process of an investor who can trade αt shares of risky assets at
time t, and starting from some initial capital y0. The set A models the constraints on the
portfolio held by the investor. For example, if A = R×{0}d−1, this means that the investor
can trade only in the first asset.

We are now given an option written on the risky assets, i.e. a payoff function in the
form g(XT ), for some Lipschitz continuous function g on Rd, that one wants to hedge with
the available risky assets, and according to a quadratic criterion. In other words, one has
to solve the stochastic control problem:

v(t, x, y) = inf
α∈A

E
[
(g(XT )− YT )2

∣∣∣ (Xt, Yt) = (x, y)
]
, (t, x, y) ∈ [0, T ]× Rd × R. (4.9)

We first approximate the continuous-time control problem (4.9) by a discrete-time con-
trol problem at dates tk = kT/n, k = 0, . . . , n for n large. We consider an approximation
Euler scheme for (Xt) with step h=T/n. The approximation Xk of Xtk is then defined by:

X0 = X0 and Xk+1 = Xk + b(Xk)
T

n
+ σ(Xk)

√
T

n
εk+1

=: F (Xk, εk+1), k = 0, . . . , n− 1,

where εk+1 = (Wtk+1
− Wtk)/

√
h is a centered Gaussian random variable in Rm with

variance Im, independent of Fk := Ftk . The process (Xk) is a Markov chain w.r.t. the
filtration (Fk). We denote by A the set of all {Fk, k = 0, . . . , n − 1}-adapted processes α

= {αk, k = 0, . . . , n − 1} valued in A. Given α ∈ A, we consider the approximation (Y k)
of the controlled process (Yt) at times (tk), and defined by:

Y 0 = y0 and Y k+1 = Y k + α∗k(Xk+1 −Xk)

=: G(Y k, Xk, αk, Xk+1), k = 0, . . . , n− 1.

We then consider the stochastic control problem in discrete-time:

vk(x, y) = inf
α∈A

E
[(

g(Xn)− Y n

)2
∣∣∣ (Xk, Y k) = (x, y)

]
, (4.10)

for all k = 0, . . . , n and (x, y) ∈ Rd × R. The convergence from the discrete-time control
problem to the continuous one may be proved either by probabilistic arguments (see [16])
or by viscosity solutions approach (see [7]):

vk(x, y) → v(t, x, y),

for all (x, y) ∈ Rd × R, as n goes to infinity and tk → t.
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The functions vk satisfy the dynamic programming formula:

vn(x, y) = (g(x)− y)2 , (x, y) ∈ Rd × R
vk(x, y) = inf

a∈A
E

[
vk+1(Xk+1, Y k+1)

∣∣ (Xk, Y k) = (x, y)
]
,

k = 0, . . . , n− 1, (x, y) ∈ Rd × R.

From a numerical viewpoint, this backward formula remains intractable since we have to
compute at each time step, conditional expectations of (Xk+1, Y k+1) given (Xk, Y k) =
(x, y) at every point (x, y) of the state space Rd × R. With respect to optimal stopping
problems, we have in addition to calculate an infimum of these conditional expectations
over the possible values of the control set A.

The starting point in the quantization approach for solving (4.10) is to discretize the
controlled (Fk)-Markov chain (Xk, Y k)k by a controlled Markov chain (X̂k, Ŷk)k valued in
a finite state space. Here, recall that (Xk)k is an uncontrolled process while (Y k)k is one-
dimensional controlled process. We shall then consider two different spatial discretizations
for (Xk)k and (Y k)k. Moreover, we also want to keep the Markov property of the controlled
quantized Markov chain w.r.t. the same filtration (Fk). This means that we wants to
approximate the control problem (4.10) by another control problem where the controls are
still adapted w.r.t. the filtration (Fk). More precisely, we shall discretize the d-dimensional
process (Xk) on an optimal grid Γk = {x1

k, . . . , x
Nk
k } at each time k and define a Markovian

quantization of (Xk) by:

X̂0 = ProjΓ0
(X0) and X̂k+1 = ProjΓk+1

(
F (X̂k, εk+1)

)
, k = 0, . . . , n− 1.

The controlled one-dimensional process (Y k) is discretized using a regular orthogonal grid
of R, namely ΓY = (2δ)Z ∪ [−R, R], and we then define:

Ŷ0 = y0 and Ŷk+1 = ProjΓY

(
G(Ŷk, X̂k, αk, X̂k+1)

)
, k = 0, . . . , n− 1.

Therefore, (X̂k, Ŷk) is a controlled Markov chain w.r.t. (Fk). We then consider the stochas-
tic control problem in discrete-time:

v̂k(x, y) = inf
α∈A

E
[(

g(X̂n)− Ŷn

)2
∣∣∣∣ (X̂k, Ŷk) = (x, y)

]
, (4.11)

for all k = 0, . . . , n and (x, y) ∈ Γk×ΓY . By the dynamic programming principle, functions
v̂k are computed recursively by:

v̂n(x, y) = (g(x)− y)2 , (x, y) ∈ Γn × ΓY

v̂k(x, y) = inf
a∈A

E
[
v̂k+1(X̂k+1, Ŷk+1)

∣∣∣ (X̂k, Ŷk) = (x, y)
]
,

k = 0, . . . , n− 1, (x, y) ∈ Γk × ΓY .

From an algorithmic point of view, this reads:

v̂n(xi
n, y) = (g(xi

n)− y)2, ∀xi
n ∈ Γn, ∀y ∈ ΓY
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v̂k(xi
k) = inf

a∈A

Nk+1∑

j=1

p̂ij
k+1v̂k+1

(
xj

k+1,ProjΓY

(
G(y, xi

k, a, xj
k+1)

))

∀xi
k ∈ Γk, ∀ y ∈ ΓY , k = 0, . . . , n− 1,

where p̂ij
k+1 = P

[
X̂k+1 = xj

k+1|X̂k = xi
k

]
.

It is proved in [19] that the estimation error for the value functions by this quantization
method is measured by:

E
∣∣v0(X0, y0)− v̂0(X0, y0)

∣∣ ≤ C1(1 + |y0|)
(

1√
n

n∑

k=0

(n− k)‖∆k‖2 +
n∑

k=0

‖∆k‖2

)

+C2nδ + C3(1 + |y0|p) n

Rp−1
,

for all p > 1 and y0 ∈ R. Here, C1, C2 and C3 are positive constants depending on the
coefficients of the diffusion process X and

‖∆k‖2 = ‖F (X̂k−1, εk)− X̂k‖2

is the L2-quantization error at date k in the Markovian approach.

4.2.2 Numerical illustrations

As a numerical illustration, we consider the two following models:

A stochastic volatility model (2-dim X-process) Let X = (X1, X2) be governed by:

dX1
t = X1

t X2
t dW 1

t

dX2
t = −η(X2

t − σ)dt + βdW 2
t , X2

0 ∼ N (σ;
β2

2η
)

where (W 1,W 2) is a standard two-dimensional Brownian motion. Here X1 represents the
price process of one risky asset and X2 is the (stationary) stochastic volatility process of
the risky asset. The investor trades only in the risky asset X1, i.e. A = R × {0}, and he
wants to hedge a put option on this asset, i.e. g(x) = (K − x1)+ for x = (x1, x2).

By projecting (K −X1
T )+ on the set of stochastic integrals w.r.t. S, we have by Itô’s

formula:

(K −X1
T )+ = E[(K −X1

T )+ |X2
0 ] +

∫ T

0
αopt

s dX1
s + ZT

where αopt
t = ∂P

∂s (t, X1
t , X2

t ), ZT = β
∫ T
0

∂P
∂s (t,X1

t , X2
t )dW 2

t with P (t, x1, x2) = E[(K −
X1

T
)+ | (X1

t , X2
t )) = (x1, x2)].

Then, the function y0 7→ E[v0(y0, x
1
0, X

2
0 )] reaches its minimum at ymin = E[(K−X1

T )+)].
So, the optimal control is always αopt regardless of y. Since the volatility process X2

t is
independent of W 1, we notice by Jensen’s inequality that

E[(K −X1
T )+] ≥ PutB&S(x1

0,K, T, σ).

Parameters for numerical implementation :
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• Model parameters: T = 1, σ = 20%, η = 0.5, β = 0.05, x1
0 = K = 100.

• Time discretization: n = 25.
• Spatial discretization (quantization grid parameters):

– Grid ΓX : 2δ = 1
20 , nX = 50 (i.e. |ΓX | = 2× 100 + 1), centered at I0 = 7.96.

– Grids Γk: Total numbers of points used to produce the n = 25 grids that quantize
the Euler scheme of (S, σ), N = 5 750 (N25 = 299).

– Optimization of the grids using M = 106 independent trials of the Euler scheme.
• Approximation of the optimal control: dichotomy method on A = [−1, 0].

Numerical results: Figure 5 below depicts a quantization of XT = (X1
T
, X2

T
) using

N25 := 299 points obtained as a result of an optimization process described above
Figure 6 and Figure 7 display the computed graph of y 7→ E[v̂0(y, x1

0, X̂
2
0 )] and the

value of the optimal control αopt
0 at t = 0 respectively. The global shape of the graph

is parabolic and reaches its minimum at ymin = 8.06. This is to be compared with the
premium provided by a direct Monte Carlo simulation, namely 8.00. The optimal control
is nearly constant and its value at ymin = 8.06, αmv

0 (ymin) = −0.38, is satisfactory w.r.t.
the theoretical value estimated by Monte Carlo (−0.34).

A put on a Black & Scholes geometric asset (4-dim X-process) We consider a
Black & Scholes model X = (X1, . . . , X4) in 4 dimension: b = 0 and σ(x) is the 4 × 4
diagonal matrix with ith diagonal term σi(x) := σix

i. The payoff function to be hedged is
a geometric put option on Jt = X1

t . . . Xd
t :

g(XT ) = (K − JT )+.

The investor is allowed to trade only in the first asset X1 hence A = R× {0}3.
So, the mean variance hedging problem of the investor at time t = 0 is

v(0, x0, y0) = min
α∈A

E
[(

Y y0,α
T − (K − JT )+

)2
]

. (4.12)

where x0 is the initial vector value risky asset. Itô’s formula then classically yields

(K − JT )+ = E[(K − JT )+] +
∫ T

0
Ht dJt with Ht =

∂P

∂x
(T−t, Jt,K, σ), t∈ [0, T ),

where P (θ, x, K, σ) denotes the price of a one dimensional European Put option with resid-
ual maturity θ, asset price x, strike price K, constant volatility σ. It follows that

E
[
(Y y0,α

T − (K − JT )+)2
]

=
(
y0 − P (T, J0,K, σ)

)2
+ σ2

1

∫ T

0
E (JsHs − αsX

1
s )2 ds

+
d∑

i=2

σ2
i

∫ T

0
E (JsHs)2 ds.

Hence, the solution of (4.12) is given by

v0(x0, y0) =
(
y0 − P (T, J0, K, σ)

)2
+

d∑

i=2

σ2
i

∫ T

0
E (JsHs)2 ds
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using the optimal control

αopt
t =

JtHt

S1
t

= X2
t . . . Xd

t

∂P

∂x
(T − t, Jt, K, σ).

In the above model, the non correlation assumption of the assets may look not very real-
istic but corresponds to the most difficult case to solve for quantization since it corresponds
in some way to a “full d-dimensional problem”.

Parameters for numerical implementation:

• Model parameters: d = 4, T = 1, σ = 15%, σ1 = σ/
√

2 and σi = σ/
√

2(d− 1), i =
2, . . . , d, Xi

0 = (100)1/d, i = 1, . . . , d, K = 100.
• Spatial discretization (quantization grid parameters):

– Grid ΓY : 2δ := 1
10 , nY := 2 00 (i.e. |ΓX | = 2× 2 00 + 1), centered at I0 = 5.97 (B&S

premium of the put option with volatility σ).
– Grids Γk: Total numbers of points used to produce the n = 20 grids that quantize

the geometric Brownian motion S: N = 22 656 (N20 := 1 540).
– Optimization of the grids using M := 106 independent trials of the Euler scheme.

• Approximation of the optimal control: dichotomy method on A ⊂ [−2, 0].

Numerical results: Figure 8 and Figure 9 below display the computed graphs x0 7→
v0(x0, s0) and y0 7→ αopt

0 (y0, I0). The global shape of the graph is parabolic, reaches its
minimum (equal to 25.82) at ymin = 6.27 (the true value is 5.97, B&S premium for the put).
The optimal control is satisfactorily constant as expected; its value at ymin is αopt

0 (ymin) =
−0.48 (true value is −0.47).

4.3 Filtering of stochastic volatility models

We consider the following filtering model. The signal (Xk) is an Rd-valued Markov chain
given by:

Xk = F (Xk−1, εk), k ∈ N∗, (4.13)

where (εk)k is a sequence of i.i.d. random variables valued in Rm, and F is some measurable
function on Rd × Rm. The initial distribution of X0 is known equal to µ. The observation
process valued (Yk) valued in Rq takes the form:

Yk = G(Xk, ηk), k ∈ N, (4.14)

where (ηk)k is a sequence of i.i.d. random variables in Rl, independent of (εk)k, and G is a
measurable functions on Rd × Rl. We assume that for every x∈ Rd, the random variable
G(x, η1) admits a bounded density y 7→ g(x, y) w.r.t. the Lebesgue measure on Rq.

We are interested in the computation at some time n ≥ 1, of the conditional distribution
Πy,n of the signal Xn given the observations (Y0, . . . , Yn) fixed to y = (y0, . . . , yn). In other
words, we wish to calculate the conditional expectations

Πy,nf = E [f(Xn)| (Y0, . . . , Yn) = y] (4.15)
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for all reasonable functions f on Rd. From the Markov property of the pair (Xk, Yk) and
Bayes formula, we have the following expression for Πy,n:

Πy,nf =
πy,nf

πy,n1
where πy,nf = E

[
f(Xn)

n∏

k=0

g(Xk, yk)

]
, (4.16)

for any f ∈ B(Rd), the set of bounded measurable functions on Rd. This can be derived by
noting that the function y = (y0, . . . , yn) ∈ (Rq)n+1 7→ πy,n1 = E[

∏n
k=0 g(Xk, yk)] is actually

equal to the density φn+1 of (Y0, . . . , Yn) w.r.t. to the Lebesgue measure on (Rq)n+1.
In the sequel, the observations are fixed to y = (y0, . . . , yn) and we write πn for πy,n

and Πn = Πy,n.
The computation of the unnormalized filter πy,n is based on the following inductive

formula:

πkf = πk−1Hkf, k = 1, . . . , n,

where Hk is the transition kernel given by:

Hkf(x) = E [f(Xk)g(Xk, yk)|Xk−1 = x] .

Hence, the inductive formula of the unnormalized filter relies on successive computations of
conditional expectations of Xk+1 given Xk. Notice that with regard to the problems of opti-
mal stopping or stochastic control problems, we have here an infinite-dimensional problem,
since we have to calculate these conditional expectations for any Borel bounded functions
on Rd. For solving numerically this problem, we are then suggested to approximate the
conditional distributions of Xk given Xk−1 for any k = 1, . . . , n by a quantization approach
as described in Section 3. We are then given, at each time k = 0, . . . , n, an (optimal) grid
Γk = {x1

k, . . . , x
Nk
k } of Nk points in Rd, and we approximate the distribution µ of X0 by the

distribution of X̂0 = ProjΓ0
(X0), and the conditional distribution of Xk given Xk−1 by the

conditional distribution of X̂k given X̂k−1: for k ≥ 1, X̂k is defined by X̂k = ProjΓk
(Xk)

in the marginal quantization method, while X̂k = ProjΓk
(F (X̂k−1, εk)) in the Markovian

quantization method.
We then approximate the transition kernel Hk by the transition matrix Ĥk defined by:

Ĥ ij
k = E

[
1

X̂k=xj
k
g(X̂k, yk)

∣∣∣ X̂k−1 = xi
k−1

]

= p̂ij
k g(xj

k, yk), i = 1, . . . , Nk−1, j = 1, . . . , Nk.

Here, (p̂k)k is the probability transition matrix of (X̂k)k, i.e.

p̂ij
k+1 = P

[
X̂k+1 = xj

k+1|X̂k = xi
k

]
,

and p̂0 = (p̂i
0)i=1,...,N0 is the probability distribution of X̂0, i.e. p̂i

0 = P[X̂0 = xi
0]. The

unnormalized filter πn is then approximated by the discrete probability measure π̂n on Γn:

π̂n =
Nn∑

`=1

π̂`
nδx`

n
,
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where (π̂`
k), k = 0, . . . , n, ` = 1, . . . , Nk, are computed inductively by:

π̂0 = p̂0 and π̂j
k =

∑

1≤i≤Nk−1

Ĥ ij
k π̂i

k−1, k = 1, . . . , n, j = 1, . . . , Nk.

The normalized filter Πn is finally approximated by the discrete probability measure Π̂n on Γn:

Π̂n =
π̂n∑Nn
`=1 π̂`

n

.

Under the Lipschitz assumption (A1’) on the scheme F , and assuming also that the
function g(x, y) is Lipschitz in x, uniformly in y, with ratio [g]Lip , we have the following
estimation error for the approximate filter (see [20]): for any f ∈ BL1(Rd),

∣∣∣Πy,nf − Π̂y,nf
∣∣∣ ≤ ‖g‖n+1

∞
φn+1(y)

n∑

k=0

Cn,k‖∆k‖2 ,

where Cn,k(f) = [F ]n−k+1
Lip

+ 2
[g]Lip

‖g‖∞

(
[F ]Lip + 1
[F ]Lip − 1

([F ]n−k+1
Lip

− 1) + 1
)

,

‖∆0‖2 = ‖X0 − X̂0‖2 , ‖∆k‖2 = ‖Xk − X̂k‖2 in the marginal quantization method, and
‖∆k‖2 = ‖F (X̂k−1, εk) − X̂k‖2 in the Markovian quantization, k = 1, . . . , n, are the L2-
quantization errors.

Remark 4.1 • In the marginal quantization method, the constant [F ]Lip may be replaced
by the constant [P ]Lip . Note that in regular examples studied here, we have [P ]Lip = [F ]Lip .

• The uniform Lipschitz condition in y of x 7→ g(x, y) may be relaxed into a nonuniform
Lipschitz condition in the form: |g(x, y)− g(x′, y)| ≤ [g]Lip(y)(1 + |x|+ |x′|)|x−x′|, with in
this case a more complex estimation error term.

Numerical illustrations : 1. The (familiar) Kalman-Bucy model:

Xk+1 = AXk + εk ∈ Rd

Yk = BXk + ηk ∈ Rq

for k ∈ N, and X0 is normally distributed with mean m0 = 0 and variance Σ0. Here A

and B are matrices of appropriate dimensions, and (εk)k, (ηk)k are independent centered
Gaussian processes, εk ; N (0, Id) and ηk ; N (0, Λ). In this case, we have

g(x, y) =
1

(2π)d/2det(Λ
1
2 )

exp
(
−1

2

∣∣∣Λ− 1
2 (y −Bx)

∣∣∣
2
)

.

Of course, the filter Πy,n is explicitly known, see e.g. [10]: it is a Gaussian distribution of
mean mn and variance Σn given by the inductive equations:

Σ−1
k+1 = Id −A

(
A′A + Σ−1

k

)−1
A′ + B′Λ−1B

(
Σ−1

k+1mk+1

)
= A

(
A′A + Σ−1

k

)−1 (
Σ−1

k mk

)
+ B′Λ−

1
2 yk+1.
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We will illustrate the numerical scheme in dimension d = 3. Here A and B are

A =




0.8 0 0
0 0.5 0
0 0 0.2


 and B = I3.

We take Γ = (0.5)2I3. The variance Σ0 is such that (Xk) is stationary. In this case, we
can work with a single grid (1000 points). In Figure 10 is represented the 1000-optimal
quantizer used for N (0, I3). Computations are carried out with its Σ0-rescaled version
(which is a non optimal but straightforwardly accessible and quite efficient quantizer for
N (0,Σ0)). The number n of observations is equal to 20. We compute the conditional
expectations E[f(Xn) | Y0, . . . , Yn] with f(x) = x (the conditional mean) and f(x) = x · tx

(the conditional variance). The quantized version of the conditional mean is denoted by m̂n

and that given by the Kalman filter by mn. We take the same convention for the conditional
variance Σn. We represent in Figure 11 the errors ‖mk − m̂k‖ and ‖Σk − Σ̂k‖ plotted w.r.t.
k ∈ {0, . . . , 20}. Finally, Figure 12 depicts the three components of the conditional mean in
its Kalman filter version and its quantized version. These figures shows that in this setting
the 3d Kalman filter is well captured by the quantization method.

2. A stochastic volatility model arising in financial time series: Let Sk, k ∈ N, be a positive
process describing the stock prices in time, and define Yk = lnSk+1− ln Sk, the log-returns
of the stock prices. A standard stochastic volatility model (SVM) is given by

Yk = σ(Xk)ηk ∈ R with Xk = ρXk−1 + εk−1 ∈ R (4.17)

where ρ is a real constant, σ(.) is a positive Borel function on R and (εk)k, (ηk)k are
independent Gaussian processes. We consider dynamics (4.17) as a time discretization
Euler scheme with step size ∆t = 1/n, of a continuous-time Ornstein-Uhlenbeck stochastic
volatility model :

dXt = −λXtdt + τdWt, 0 ≤ t ≤ 1.

We then suppose

ρ = 1− λ∆t, εk ; N (0, τ2∆t) and ηk ; N (0, ∆t),

for some positive parameters λ and τ . Typical examples of SVM are specified with σ(x) =
|x|+γ, σ(x) = x2 +γ, or σ(x) = exp(x) for some positive constant γ. The filtering problem
consists in estimating the volatility σ(Xn) at step n given the observations of the prices
(Y0, . . . , Yn). Here,

g(x, y) =
1√

2π∆t σ(x)
exp

(
− y2

2σ2(x)∆t

)
.

The values of the parameters in our simulation are for (λ, τ, ∆t) = (1, 0.5, 1/250). The
Gaussian distribution of X0 is specified so that the sequence (Xk)k is stationary i.e. X0 ∼
N (0,Σ2

0) with Σ0 = τ
√

∆t/(1− ρ2) ≈ τ/
√

2λ = 0.35 . . .
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There are two types of models involved here:

(ABS) ≡ σ(Xk) = γ + |Xk| and (EXP ) ≡ σ(Xk) = σ exp(Xk),

with the values (γ, σ) = (0.05, 0.2).
We represent in Figure 13 the stock price simulation according (EXP) together with the

simulation of the volatility σn and its mean conditionally to Yk, 0 ≤ k ≤ n = 250. Idem in
Figure 14 with (ABS).

We represent in Figure 15, the conditional variance of the volatility w.r.t. the observa-
tions in the two models. Since we are here in a nonlinear model, we cannot compare our
results with an explicit filter, but we can see that the filter captures well the dynamic of
the stochastic volatility.

5 Toward higher order schemes in quantization methods

The aim of this section is to present in a slightly different setting the first order scheme intro-
duced in [6] and successfully tested on the pricing of Exchange options in a d-dimensional
Black& Scholes model (d = 2, 4 and 6). One comes back to the expectation computation

E [φ1(X1) . . . φn(Xn)]

along the path of a Markov chain investigated in Section 3. The idea is to try taking
advantage of the specificity of the stationary quantizers, like for the numerical integration
of smooth functions (see Section 2.3).

We deal here with marginal quantization and the approach is partially heuristic. How-
ever, to enhance the quantization aspects we will essentially focus on a smooth setting
where the φk functions are smooth, say C2

b (twice differentiable with bounded existing
derivatives). We will shortly comment below how it can be somewhat relaxed.

Assume that (Xk)0≤k≤n is a homogeneous Markov chain with a transition P (x, dy)
satisfying on C2

b functions:

‖D(Pf)‖∞ ≤ K‖Df‖∞ and ‖D2(Pf)‖∞ ≤ K(‖Df‖∞ + ‖D2f‖∞) (5.1)

for some real constant K > 0 (note that then P is Lipschitz with constant K as well).
Such an assumption is satisfied e.g. by the transition Pt of a (simulatable) diffusion having
C2

b coefficients b and σ at any time t or by the transition of its Euler scheme. Then, the
transition P clearly maps C2

b into itself and one shows by induction that the functions vk

defined by (3.2) all lie in C2
b and that their first two derivatives can be controlled using K,

‖Dφk‖∞ and ‖D2φk‖∞ .
The key result to design a first order scheme is the following proposition.

Proposition 5.1 Assume that Assumption (5.1) and holds and set by induction

ṽn(X̂n) = φn(X̂n), (5.2)

ṽk−1(X̂k−1) = φk−1(X̂k−1)E
(
ṽk(X̂k) + Dvk(X̂k).(Xk − X̂k) | X̂k−1

)
, 1 ≤ k ≤ n. (5.3)
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Then for every k∈ {0, . . . , n},
∥∥∥E(vk(Xk) | X̂k)− ṽk(X̂k)

∥∥∥
1
≤ Ln+1−k

n∑

`=k

cn
` (K)‖X` − X̂`‖2

2
(5.4)

where cn
` (K) =





1
K − 1

(
Kn−`+1

(
2(n− `)− 2

K − 1

)
+

1
2

K + 3
K − 1

)
if K 6= 1

6(n− ` + 1)(n− ` + 3/2) if K = 1

and max
1≤k≤n

(‖φk‖∞ , ‖Dφk‖∞ , ‖D2φk‖∞) ≤ L. In particular,

|E v0(X0)− E ṽ0(X̂0)| ≤ Ln+1
n∑

`=0

cn
` (K)‖X` − X̂`‖2

2
.

How to use this result to design a first order scheme? First, one reads (5.3) in distribution
i.e.

ṽk−1(xi
k−1) = φk−1(xi

k−1)




Nk∑

j=1

p̂ij
k ṽk(x

j
k) + Dvk(x

j
k).χ̂

ij
k




where the Rd-valued correcting vectors χ̂ij
k are defined by

χ̂ij
k := E

[
(Xk − X̂k)1{X̂k=xj

k}
| X̂k−1 = xi

k−1

]
. (5.5)

The key point for numerical application is to note that these correcting vectors can easily
be estimated like the former companion parameters p̂ij

k ’s, either on line during the grid
optimization phase or using a Monte Carlo simulation once the grids are settled.

The second step is mostly heuristic so far: the weak link in (5.3) is of course that the
differential Dvk is involved in the computation of ṽk−1 and this function is not numerically
accessible since we precisely intend approximating the functions vk. Note that if Dvk−1 had
been involved in (5.3), the scheme would have been definitely intractable. In its present
form, many approaches are possible.

It often happens, e.g. for diffusions or Euler schemes with smooth coefficients, that
D(Pf) = Q(Df) where Q is a simulatable integral kernel as well. So one can rely on the
backward induction formula

Dvk = Dφk Pvk+1 + φk Q(Dvk+1)

to approximate the differentials Dvk using quantization. Another approach is to use some
approximation by convolution: one approximates Dvk by (Dϕε) ∗ ṽk where (ϕε)ε>0 is e.g.

a Gaussian unit approximation. The practical task is to tune the band width ε.

When the functions φk are not smooth enough, one uses the regularizing properties
of the Markov semi-group if some. When dealing with diffusions, this is when Malliavin
Calculus and the Skorohod integrals come in the game like in [6]. However, some loss in
the rate of convergence is to be expected due to the singularity near the maturity n.

We present in Figure 16 a graph that emphasizes the improvement provided by this first
order quantization tree descent versus the original one for pricing 6-dimensional American
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exchange options, as described in paragraph 4.1. We consider an “in-the-money” case
consisting in setting x1

0 . . . x3
0 = 40 and x4

0 . . . x6
0 = 36, all other parameters being unchanged.

For more details we refer to [6].
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Figure 2: Linear regression in log-log scale of N 7→ |Eg2(Ẑ) − Êg2(Z)N |. In a) d = 3; b)
d = 4; c) d = 5.
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Figure 3: American exchange option in dimension 4 (out-of-the-money case). The reference
price is depicted by a line and the quantized price by the cross line.
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Figure 4: American exchange option in dimension 6 (out-of-the-money case). The reference
price is depicted by a line and the quantized price by the cross line.
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Figure 5: L2-optimal 300-quantizer of (log(X1
T
), X2

T
) with its Voronoi tessellation.
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Figure 13: a) Stock price simulated according to (EXP). b) Simulated volatility according
to (EXP) (Thick line), Conditional mean of the volatility (Thin line).
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Figure 15: a) Conditional Variance of the Volatility according to (EXP). b) Conditional
Variance of the Volatility (ABS).
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Figure 16: American exchange option in dimension 6 (in-the-money case). The reference
price is depicted by a line and the quantized prices (order 0 and order 1) by cross lines.
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